AR是什么?与VR有什么区别?为什么说AR的市场空间增长速度将远高于VR?AR眼镜有哪些核心部件?是什么制约了AR眼镜的规模商用?衍射光波导是什么黑科技?如何设计制造衍射光波导?衍射光波导领域的玩家有哪些?如何看待光波导玩家的现状与未来?今天,我们就来和大家用“白话”聊一聊这些话题。
01
AR是什么?与VR有什么区别?
对于VR,生涩的定义咱们就不说了,直接上动图。
▲VR眼镜,来自Youtube▲
VR的名字(VirtualReality,虚拟现实)很贴切,带上VR眼镜之后,我们看到是一个完全的“假的”世界,是一个虚拟出来的世界。与此同时,也意味着,我们看不到现实世界了,“瞎了”。动图中的那个妹子被套在一个“围栏”里,就是为了避免这个“瞎子”摔个狗啃泥。
那么问题来了,带上了VR眼镜,我就“与世隔绝”了。能不能有种眼镜,在看到现实世界的同时,又能看到虚拟世界?嗯,这实际上就是AR眼镜被发明的缘由。来,看看下面的动图,了解一下AR眼镜。
▲AR眼镜,来自Youtube-TheU.S.Army▲
02
相比VR,AR的发展速度更快
由前面我们对AR和VR的对比可以看出,相比VR,AR实现了人类更多的愿望:既能看到真实世界,又能看到虚拟世界。如果把VR比作“熊掌”的话,AR就是人们心目中的“鱼和熊掌”。
▲AR/VR产业发展预测图,来自IDC▲
03
AR眼镜的结构与关键技术
如下图所示,从基础结构上说,无论是VR眼镜还是AR眼镜,都与手机的架构并无差异。主要由输入传感器、输出系统、电源、计算、存储和通信模块所构成。AR/VR与手机之间关键区别,在于光学输出系统(显示系统)。
▲AR/VR眼镜基础架构图,黑毛警长008整理▲
除了光学输出系统外,VR/AR所需要的其他硬件基本与手机类似,大部分均已较为成熟。当前制约VR/AR发展的硬件技术瓶颈,在于光学显示系统。
相比手机的显示系统,VR眼镜的显示系统需要实现高清晰度、高刷新率、高可视角度(FOV)、低功耗、低散热、低重量和小型化等一系列要求。
而AR眼镜则更进一步,不仅要达到VR眼镜的一系列要求,还需要能够将光学输出显示在透明镜片上。这一看似简单的“小目标”,却令AR眼镜的光学系统结构完全不同于VR眼镜,复杂度和成本大幅上升。虽然显示技术在最近几十年来快速发展,但是业界却一直难以拿出一个性能相对可靠,并有可能以低成本大规模量产的AR光学显示方案。直到2010年,诺基亚公司的TapaniLevola博士发明了用于近眼显示的衍射光波导技术,才让AR行业看到了曙光。随着AR产业的不断发展,衍射光波导已被业界誉为“AR产业的金钥匙”。
04
衍射光波导和他的“先辈”们
虽然是“金钥匙”,但是在衍射光波导出现之前,还是有很多“先辈”的。它们主要有棱镜、自由曲面、全息反射薄膜,以及一个“近亲”几何光波导。不同的厂商,由于自身的“屁股”原因,对于哪个技术能“继承大统”自然有不同的“认知”。如果我们要从技术上去识别这些光学系统孰优孰劣,怕是100篇论文也说不清。那怎么就能知道这些技术谁能最终拔得头筹呢?咱们的“捷径”是看看业界大咖的实际选择,毕竟,不管嘴上怎么说,身体都是很诚实的。
至于说衍射光波导技术的各位“先辈”呢,其实大部分都还“健在”,但是随着“后浪”衍射光波导的快速发展,这些“前浪”怕是会陆续在“沙滩”上相会了。
05
衍射光波导的技术原理和分类
所谓光波导,简单说就是让光在设计好的路径中传播。而衍射光波导,则是利用了光的衍射特性,来设计并实现“光路”。还记得曾经学过的物理学知识吗?衍射,需要小孔或者“栅栏”来实现。衍射光波导实现的技术方法之一,就是在光学平面上“刻”出一道道“栅栏”(术语为光栅),让光线按照设计好的路径传播。
在下图的左下角的方框处,俗称“光机”。光机负责把电信号转为光学影像,可以把光机简单的理解为一个投影仪。而光波导呢,则负责将来自“投影仪”影像最终传递到眼睛里。光波导,由光学镜片及镜片上的光栅构成。图中的光波导是一个比较经典的光波导结构,由三片光栅区域构成。左下角的第一片光栅是输入光栅,负责接收光信号,并将光传递到右下侧的“转折”光栅区。转折光栅区一方面对光线进行水平扩瞳(下文详述),另外再将光线传递到右上角的输出光栅。输出光栅对光线进行垂直扩瞳(下文详述),并最终将光线输出,投射到人眼中。
▲传统衍射光波导原理,图片来自Digilens▲
▲FOV示意图,来自giganti.co▲
而光波导技术中的“扩瞳”,就是将低FOV的输入变为高FOV的输出。由于扩瞳同时存在水平和垂直两个方向,因此传统的衍射光波导都需要两个光栅进行二维“扩瞳”,再加上输入光栅,那就需要3片光栅区了。
▲传统衍射光波导原理,图片来自Waveoptics▲
上面的动图是传统的衍射光波导,而下图的动图则是Waveoptics发明的新型光栅,将传统的3个光栅区变为2个,输出光栅区面积比传统方式大了很多。
▲新型衍射光波导原理,图片来自Waveoptics▲
说完衍射光波导的原理,我们再来看看光栅的两个子类:表面浮雕光栅和体全息光栅。
▲显微镜下的表面浮雕光栅(间隔为400纳米),来自toppan.co.jp▲
表面浮雕光栅(SurfaceReliefGrating),顾名思义,是“浮雕”出来的光栅结构,其制造工艺与制造芯片的工艺类似,叫做纳米压印(Namo-imprint),后面我们再详细讲。
▲体全息光栅,来自andor.com▲
而体全息光栅(VolumeHolographicGrating)则是一种通过全息曝光技术生成的光栅。需要强调的是,体全息光栅只是其生产工艺使用了全息曝光技术,光栅本身并不会产生全息图像。怎么理解体全息呢?可以把它理解为一个可以被曝光“显影”的涂层,这个涂层被激光曝光后可以形成折射率不同的条纹,也就是另外一种形态的光栅。而所谓体全息,是在一个涂层中进行多次全息曝光,从而在同一个“体积”中,保存有多重条纹。
06
表面浮雕光栅衍射光波导的产业链
由于体全息光栅目前尚未形成完整的产业链,产业链部分本文仅讨论表面浮雕光栅。在说产业链之前,我们有必要先了解一下表面浮雕光栅的设计与生产流程。
▲表面浮雕光栅设计及制造流程,黑毛警长008整理▲
工艺流程分为三个阶段,分别是母版、步进母版和成品阶段。这个过程类似饼干工厂压制饼干的流程。
第一步是要设计并制造单个饼干模子(母板),第二步是用母板在一块大板上压出多个图样,形成一个大模子,第三步就是用大模子批量的压制成品。
虽然表面浮雕光栅的设计和制造产业链涉及到众多厂商,但是在母版和步进母版部分,并没有太多瓶颈,原因是这部分的原材料和制造设备与半导体产业同源,已经相当成熟。表面浮雕光栅的关键技术集中在光栅设计和高折射率原材料领域。
▲台风战斗机,图片来自BAE▲
▲BAE战斗机头盔使用了衍射光波导技术,图片来自BAE▲
而在纳米压印设备领域,基本上都被一家德国公司所垄断,那就是EV集团(EVG)。
07
衍射光波导领域的国内厂商
从上面的产业链图表我们发现,产业链中的公司仅来自美、英、德、日这四个国家。中国公司难道集体缺席?
08
总结
AR产业的巨大市场空间吸引了众多玩家相继投入其中,而衍射光波导这一新兴技术,被誉为打开“AR产业”的金钥匙,更成为国外巨头争相重金投入的关键领域。美、英、德、日四个国家在核心产业链早做布局,甚至在部分环节上形成了垄断的局面,而中国厂商却一度缺席衍射光波导朋友圈。
相信在歌尔和水晶的引领下,中国将会涌现出更多的企业,不仅在AR应用领域,更能在衍射光波导这一核心技术领域,为中国赢得一席之地。
悄悄问一句,谁认真看完了全文啊,你可以报个到,这种长文能撑到最后的人恐怕不多。另外,这个节,胖了没?