开通VIP,畅享免费电子书等14项超值服
首页
好书
留言交流
下载APP
联系客服
2010.10.21
孔子谈学习方法
祖冲之的学习方法
(密率:PI=355/113约率:PI=22/73.1415956<><>)
爱因斯坦的学习方法
爱因斯坦的学习方法,大致可概括成:依靠自学,独立思考,穷根究底,大胆想象,强调理解,重视实验,弄通数学,研究哲学等八个方面。
朱熹提倡的学习方法
他的弟子将朱子读书法归纳为以下六条:循序渐进;熟读精思;虑心涵咏;切已体察;着紧用力;居敬(收心集中注意)持志。
有一个数字,它是变量数学中不可缺少的常数,它是描述自然界各种连续变化的有力工具,它是自然界纷繁复杂背后隐藏的基本规律,它是伟大的数学家。
Euler的杰出创造,它能使微积分的运算简洁方便,它是数学家看着就亲切的一个数字。这就是:
假如你把一块钱存入一家银行,银行的年利率是百分之百(这只是一个比方,不必用生活中的常识来评价),银行允许中间取本息,而且利息是平均分到各个时段的。比如吧:你要是只存一个月,你将拿到13/12这么多的本息。这时如果不嫌麻烦,你可以选择半年取一次钱,再连本带利的存入银行,这时年末你将得到
如果你还想多得钱,可以把一年分三段来取款,连本带息存入,你将得到
如果你不嫌麻烦,银行允许,你将多跑几次,甚至坐在银行取款台那里不走,如果你把一年分成n次,你将得到
这个数是用来描述自然界连续累加变化不可缺少的常数,自然界的经济增长和衰退,放射性元素的衰变,冰层的厚度,等等都离不开这个数字来描述。
但是e不是有理数,也就是不能写成两个整数相除的形式,其实它的任何代数运算都不能得到整数,这说明它是超越的。
这如果在古希腊,有这样的数存在是不能容忍的。当时有一个学派叫做必达哥拉斯学派,认为数是构成世界的基石,并且认为数应该是完美的:都能写成两个整数相除的形式。但必氏的一个学生经过论证指出,如果正方形边长是1,它的对角线长度就不能表示成任何两个整数的相除,这样的数在当时认为是无理的数(irrationalnumber),引发了数学历史上的第一次危机,这个学生也被丢到海里没了性命。
你找一个直角座标图纸,然后以原点为中心,1单位长为半径画一个圆。你看看这个圆经过哪一些点,它的x座标及y座标是整数的?
你会看到只有四点,即(0,1),(0,-1),(-1,0),(1,0)。
我们在数学上把这类平面上x座标及y座标都是整数的点称为整点,或者格点(latticepoint)。现在再看以原点为中心,2单位长为半径的圆经过的格点有(1,1),(1,-1)及(-1,-1)。
原点为中心画圆,你看一看会有什么结果?
我的天,真是奇怪,怎么这时候没有格点落在圆上呢?是的,数学就是这样有趣的玩意儿,问题的条件稍微有一点变化,整个结果的情形就改变了。
在n=4,5时读者很容易可以找到它们的解。可是在n=6,7时却无解了。n=8时却有解。
偶完全数的一个巧妙的性质我们上文介绍过偶完全数。为了使读者能了解同余能帮助我们更深入认识数的一些美丽性质,我们来研究偶完全数一个很巧妙的性质。
我们回忆一下:完全数是那些整数,它的所有小于它本身的因子的和是等于自身。我们知道的完全数到目前为止只有27个,而且都是偶数。最小的几个是6=1+2+3,28=1+2+4+7+14,496,8128,33550336等等。
你可以看到这些数的个位数和十位数时常是6或28。如果明天有一个新的偶完全数被人们发现,它的个位数或十位数是否也会是6或28呢?
我们知道二千年前的欧几里得及18世纪的数学家欧拉证明了偶完全数只能是2k-1(2k-1)这里k=2或k是奇数。
k=2时,我们得最小的偶完全数2(22-1)=6;
现在看k是奇数的情形,奇数可以分成两类:
由于k-1=4n,所以2k-1=24n=(24)n
读者试试算以上的各种情形一定会得到
数学心理学是应用数学模型来描述心理现象的心理学分支。德国心理学家费希纳在1860年的心理物理学研究中,最早用数学公式表达了客观物理量和主观感觉强度之间的函数关系。1927年瑟斯顿在制定心理量表时提出了比较判断率,并用公式来表明两个刺激间的主观距离。这些工作都属于数学心理学的范畴。但是,当时这类工作为数不多,也比较分散,还没有数学心理学之称。第二次世界大战后,由于信息论、控制论、统计决策论及计算机科学的推动,数学心理学才得到真正的发展。20世纪50年代初,埃斯蒂斯、布什和莫斯蒂勒提出的学习模型,是这一新方向的开端。目前实验心理学的许多重要领域,如测量、决策、学习和社会的相互作用等方面,都已制定出大量的数学模型。
我们现在考虑两个数列:
我们用S(k)来表示那些整数,可以用k个平方数的和来表示的集合。
读者如果注意观察会发现凡是形如4k+3的整数都不在S(2)里面。
S(3)有什么整数呢?首先1是在里面,1=12+02+02,2也是在里面,因为2=12+12+02。3也可在里面,因为3=12+12+12。4=22+02+02,5=22+12+02,6=22+12+12所以4,5,6都在S(3)。但是你会发现7不在S(3)里。
如果你多次观察你也会发现凡是形如8k+7的整数都不在S(3)里。
S(4)是包含什么样的东西呢?答案是:所有的自然数。这是法国数学家拉格朗日(Lagrange1736-1813)在1770年证明的一个有名的定理。
要证明整数形如4k+3不在S(2)里,及形如81+7不在S(3)里是否会很难呢?我想不会太难,我们用同余就可以协助我们解决。
我们知道自然数可以根据同余分成四个部分
[0]4=那些是4的倍数的整数集
[1]4=那些形如4k+1的整数集
[2]4=那些形如4k+2的整数集
[3]4=那些形如4k+3的整数集
由于(4k+1)2=(4k)2+2(4k)+1=4(4k2+2k)+1
(4k+2)2=(4k)2+4(4k)+4=4(4k2+4k+1)
(4k+3)2=(4k)2+6(4k)+9=4(4k2+6k+2)+1因此在[0]4的数,平方后仍旧在[0]4表面不会跑掉。因而[1]4里的数也是平方后仍在原来的老巢里。但是在[2]4里的数,一平方后就飞到[0]4里去了。[3]4的数也是一样,平方后溜到[1]4中。
由此我们知道:任何数一平方后,要不是形如4k就是形如4k+1。
现在看两个平方数x,y的和。可能情形有三种:
第一种:x是形如4k,y是形如4k,x+y当然是形如4k
第二种:x是形如4k,y是形如4k+1,x+y当然是形如4K+1
第三种:x是形如4k+1,y是形如4k+1,x+y当然是形如4k+2
这三种情形都没有4k+3的样子,这就是说凡是形如4k+3的整数一定不能表示成两个平方数的和。
你看我们不是解决了S(2)的情形,关于在S(3)中不包含8k+7的形状的数的证明,留给读者自己练习。你看我们是怎么样对S(2)的情形考虑,类似处理S(3)的情形,动脑筋想一想就可以很容易解决了。
数学的主要内容是计算和证明。在十七世纪,算术因符号化促使了代数学的产生,代数使计算变得精确和方便,也使计算方法系统化。费尔马和笛卡儿的解析几何把几何学代数化,大大扩展了几何的领域,而且使得少数天才的推理变成机械化的步骤。这反映了代数学作为普遍科学方法的效力,于是笛卡儿尝试也把逻辑代数化。与笛卡儿同时代的英国哲学家霍布斯也认为推理带有计算性质,不过他并没有系统地发展这种思想。
所以逻辑命题可以表示如下:凡x是y可以表示成x(1-y)=0;没有x是y可以表示成xy=0。它还可以表示矛盾律x(1-x)=0;排中律x+(1-x)=1。
布尔看出类的演算也可解释为命题的演算。当x、y不是类而是命题,则x=1表示的是命题x为真,x=0表示命题x为假,1-x表示x的否定等等。显然布尔的演算构成一个代数系统,遵守着某些规律,这就是布尔代数。特别是它遵从德莫尔根定律。
美国哲学家、数学家小皮尔斯推进了命题演算,他区别了命题和命题函数。一个命题总是真的或假的,而一个命题函数包含着变元,随着变元值选取的不同,它可以是真也可以是假。皮尔斯还引进了两个变元的命题函数以及量词和谓词的演算。
对现代数理逻辑贡献最大的是德国耶拿大学教授、数学家弗雷格。弗雷格在1879年出版的《概念文字》一书中不仅完备地发展了命题演算,而且引进了量词概念以及实质蕴涵的概念,他还给出一个一阶谓词演算的公理系统,这可以说是历史上第一个符号逻辑的公理系统。因此在这本只有88页的小册子中,包含着现代数理逻辑的一个颇为完备的基础。
1884年,弗雷格的《算术基础》出版,后来又扩展成《算术的基本规律》。不过由于他的符号系统烦琐复杂,从而限制了它的普及,因此在十九世纪时,他的著作流传不广。后来由于罗素的独立工作,才使得弗雷格的工作受到重视。
用符号语言对数学进行公理化的是意大利数学家皮亚诺,他在1889年用拉丁文写了一本小册子《用新方法陈述的算术原理》。在这之前,皮亚诺已经把布尔和施罗德的逻辑用在数学研究上,并且引进了一系列对于他前人工作的更新。例如对逻辑运算和数学运算使用不同的符号,区别范畴命题和条件命题,这引导他得出量词理论。
这些改进都是对于布尔和施罗德理论的改进,而不是对弗雷格理论的改进,因为当时皮亚诺还不知道弗雷格的工作。在《算术原理》中,他在引进逻辑概念相公式之后,开始用符号的记法来重写算术,在这本书中他讨论了分数、实数、甚至极限和点集论中的概念。
从1开始,皮亚诺用x+1来表示后继函数。然后作为定义引进了加法和乘法。这些定义是递归的定义。虽然在他的系统中,皮亚诺没有象戴德金那样有力的定理可资利用,但皮亚诺并没有公开地宣称这些定义可以去掉。
这本书的逻辑部分还列出命题演算的公式,类演算的公式,还有一部分量词的理论。皮亚诺的符号要比布尔和施罗德的符号高明得多,标志着向近代逻辑的重要转变。他还对于命题的演算和类演算做了某些区别。这就是我们现在的两种不同演算,而不是同一种演算的两种不同解释。它的普遍量词记号是新的,而且是便利的。
命题演算
逻辑演算是数理逻辑的基础,命题演算是逻辑演算最基本的组成部分。命题演算研究命题之间的关系,比如简单命题和复杂命题之间的关系,简单命题如何构成复杂命题,由简单命题的真假如何推出复杂命题的真假等等。对于具体命题,我们不难通过机械运算来达到我们的目的,这就是命题的算术。
对于命题演算最早是由美国逻辑学家波斯特在1921年给出证明的,他的证明方法是把命题化为标准形式—合取范式。教科书中常见的证明是匈牙利数学家卡尔马给出的。除了这些构造性证明之外,还有用布尔代数的非构造性证明。
一阶谓词演算
在命题演算中,形式化的对象及演算的对象都是语句。但是,在数学乃至一般推理过程中,许多常见的逻辑推理并不能建立在命题演算的基础上。例如:1.张三的每位朋友都是李四的朋友,王五不是李四的朋友,所以王五不是张三的朋友。因此,我们必须深入到语句的内部,也就是要把语句分解为主语和谓语。
谓词演算要比命题演算范围宽广得多,这由变元也可以反映出来。命题演算的变元只是语句或命题,而谓词演算的变元有三类:个体变元、命题变元、谓词变元。由于谓词演算中有全称量词和存在量词,在这些量词后面的变化称为约束变元,其他变元称为自由变元。最简单的谓词演算是狭义谓词演算,现在通称一阶谓词演算。
谓词演算中的普遍有效公式与命题演算中的重言式还是有差别的。我们有行之有效的具体方法来判定一个公式是不是重言式。这种方法每一步都有明确的规定,并且可以在有限步内完成,这种方法我们称为能行的。但是在谓词演算中,并没有一种能行的方法来判定任何一个公式是否普遍有效的。这就需要寻找一种能行的方法来判定某个具体公式或一类公式是否普遍有效,这就是所谓判定问题。它是数理逻辑中最主要的问题之一。
一阶谓词演算的普遍有效公式也有一个公理系统。另外,同样也有代入规则及推理规则。另外,还有约束变元改字规则等变形规则。在谓词演算中也可以将每一个公式通过变形规则化为标准形式。其中最常用的是所谓前束范式,也就是公式中所有的量词都放在最前面,而且还可以把前束范式进一步化成斯科兰路范式,它不但具有前束范式的形状,而且每一个存在量词都在所有全称量词之前。
利用范式可以解决许多问题,最重要的是哥德尔证明的一阶谓词演算的公理系统的完全性定理,即可以证明:公式A在公理系统中可以证明的当且仅当A是普遍有效的。同样,一阶谓词演算的公理系统也是协调(无矛盾)的、相独立的。1936年丘奇和图林独立的证明一阶谓词演算公式的一般判定问题不可解问题,可以变为去解决具有特殊形式的范式公式的判定问题。
其他逻辑演算
另一种常见的逻辑是模态逻辑,它是美国逻辑学家刘易斯在1918年引进的。他考虑的不是实质蕴涵而是严格蕴涵。另外,他在逻辑中也考虑所谓必要性与可能性等问题,引进著名的模态算子,这是直观可能性的形式化。
还有一个包括古典逻辑演算的公理系统,即直觉主义公理系统,其中否定排中律,它是荷兰数学家海丁于1930年引进的。它虽因直觉主义而得名,但是可以得到其他的解释,在现代数理逻辑的研究中十分重要。
在数理逻辑的研究中,狭义谓词演算是最重要的。狭义谓词演算也称一阶谓词演算,许多人默认数学中所用的逻辑通用为一阶谓词演算。但是,许多涉及数学问题的逻辑演算必须加进有关等号的谓词,称为具等式的一阶谓词演算。这是现在最常用的一种逻辑系统,在研究算术系统中就要用到它。
但是,即使象实数的算术系统,一阶谓词演算也是不够的,更何况现代数学中涉及集合的子集,因此一阶谓词演算是不足以表达的。这时需要二阶谓词演算乃至高阶谓词演算,其中首先出现的是谓词变元。
逻辑系统比数学系统更不统一,各人用的系统在细节上有许多不同,而且同一概念也用不同的符号来表示。第一套是弗雷格自己系统运用的,但是连他的后继者也不用这套极不方便的符号系统。第二套是皮亚诺首先在《数学论集》提出的,后经罗素和怀特海在《数学原理》中使用。一般文献通用的都是这种符号系统的改进形式,如希尔伯特和他的学生们采用的也属于这一套。第三套是卢卡西维茨使用的,后来也有人用,如普瑞尔在《形式逻辑》中就加以来用。
若想预见数学的未来,正确的方法是研究它的历史和现状。
──H彭加勒
战争、饥荒和瘟疫能引起悲剧,然而,人类思想的局限性也能引起智力悲剧。本书论及的不幸事件降临在人类最为卓著且无与伦比的成就,对人类的理性精神具有最持久和最深刻的影响—数学的头上。
换句话说,这本书在非专业层次上探讨数学尊严的兴衰。看到数学现在的宏大规模,日益增多甚至呈繁荣之势的数学活动,每年发表的数以千计的研究论文,对计算机兴趣的该头涨,以及尤其是在社会科学和生物科学中对定量关系的广泛研究,数学的衰落何从谈起?悲剧存在于何处?要回答这些问题,我们必须首先考虑是什么为数学赢得了巨大的声望和荣誉。
作为一个独立知识体系的数学起源于古希腊,自它诞生之日起的两千多年来,数学家们一直在追求真理,而且成就辉煌。关于数和几何图形的庞大理论体系为数学提供了一个看来似乎永无休止的确定性前景。
在数学以外的领域,数学概念及其推论为重大的科学理论提供精髓。尽管通过数学和科学的合作才获得的知识用到了自然定律,但它们看来似乎与绝对的数学真理一样绝对可信,因为天文学、力学、光学、空气动力学中的数学所做的预测与观察和实验相当吻合。因此,数学能牢固把握宇宙的所作所为,能瓦解玄秘并代之以规律和秩序。人类得以趾高气扬地俯瞰他周围的世界,吹嘘自己已经掌握了宇宙的许多秘密(实际上是一系列数学定理)。拉普拉斯的话概括了数学家们一直在不懈地寻求真理的信念。他说,牛顿是最幸运的人因为只有一个宇宙,而他已发现了它的规律。
数学依赖于一种特殊的方法去达到它惊人而有力的结果,即从不证自明的公理出发进行演绎推理。它的实质是,若公理为真,则可以保证由它演绎出的结论为真。通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出显然是毋庸置疑、无可辩驳的结论。数学的这套方法今天仍然沿用,任何时候,谁想找一个推理的必然性和准确性的例子,一定会想到数学。这种数学方法所取得的成功吸引了最伟大的智者,数学已显示了人类理性的能力、根源和力量。所以他们猜测,为什么不能把这种方法用到由权威、风俗、习惯控制的领域,比如在哲学、神学、伦理学、美学及社会科学中去寻求真理呢?人类的推理能力,在数学及自然科学中,是如此的卓有成效,肯定也将成为上述其他领域思想和行为的主宰,为其获得真理的美和美的真理。因此,在称作理性时代的启蒙时代,数学方法甚至加上一些数学概念和定理,用到了人文事务中。
新的几何学和代数学的诞生使数学家们感受到另一个宇宙的震动。寻求真理的信念使数学家们如醉如痴,总是迫不及待地用严密论证去追求那些虚无飘渺的真理。认识到数学并不是真理的化身动摇了他们产生于数学的那份自信,他们开始重新检验他们的创造。他们失望地发现数学中的逻辑形容枯槁,惨不忍睹。
事实上,数学已经不合逻辑地发展。其不仅包括错误的证明,推理的漏洞,还有稍加注意就能避免的疏误。这样的大错比比皆是。这种不合逻辑的发展还涉及对概念的不充分理解,无法真正认识逻辑所需要的原理,以及证明的不够严密;就是说,直觉、实证及借助于几何图形的证明取代了逻辑论证。
不过,数学仍然是一种对宇宙的有效描述,而且在许多人心里,特别是在柏拉图主义者看来,数学自身当然还是一个颇具魅力的知识体系,一个因具真实性而受到青睐的部分。因此,数学家们决定弥补丢失了的逻辑结构,重建有缺陷的部分。在19世纪下半叶,数学的严谨化运动格外引人注目。
到1900年,数学家确信他们已实现了自己的目标。尽管他们不得不满足于数学仅能作为宇宙的一个近似描述的观点,许多人甚至放弃了宇宙的数学化设计这一信念,但他们的确庆幸他们重建了数学的逻辑结构。然而,他们还没来得及炫耀自封的成功,在重建的数学中就发现了矛盾。一般称这些矛盾为悖论,这是避免直接说矛盾而破坏了数学逻辑的委婉用语。
当时那些领头的数学家几乎立刻就投身于解决这些矛盾,结果他们构想、阐述甚至推出了四种不同的数学结构,每一种都有众多的追随者。那些基础的学派不仅努力解决已有的矛盾而且力争避免新的矛盾出现,就是说,建立数学的相容性。在这些基础研究中又出现了其他的问题,某些公理和演绎逻辑推理的可接受性也成为几个学派采取不同立场的重要原因。
到1930年,数学家已满足于接受几种数学基础的一两个,并且宣称自己的数学证明至少和这些学派的原则相符。但是,灾难再次降临,形式是K.哥德尔的一篇著名论文。哥德尔证明了那几个学派所接受的逻辑原理无法证明数学的一致性。这还不包括论文里其他一些意义重大、影响深远的结果。哥德尔表明,对已取得的成功提出质疑不能不用到非常可疑的逻辑原理。哥德尔定理引起一场巨变。随后的发展带来了更大的麻烦。例如,就连过去极度推崇的、被认为是精密科学方法的公理化—演绎方法看来也是有缺陷的。这些新的发展给数学增加了多种可能的结构,同时也把数学家分成了更多的相异群体。
有的数学家认为,关于接受什么作为真正数学的不同观点,有一天会统一起来。这些人中比较有名的是一群署名为布尔巴基的法国领头数学家。
然而,更多的数学家并不乐观。
用哥德的话说:一门科学的历史就是这门科学本身。
真理的丧失,数学和科学不断增加的复杂性,以及何种方法用于数学是最保险的不确定性,已使大多数数学家放弃科学。风声鹤唳,草木皆兵,数学家们不得不退回到证明方法看起来似乎很安全的数学领域。他们还发现人为编造出来的问题比自然界提出来的问题更富魅力,处理起来更加得心应手。
因完美的数学是什么而产生的危机和矛盾还阻碍了数学的方法在许多其他文化领域中的应用,如哲学、政治科学、伦理学、美学。找到客观、正确的定律和标准的希望变得微弱了,理性时代已经过去。
尽管数学令人不满意,方法复杂多变,对可接受公理持不同意见,还有随时可能出现的新矛盾,都会殃及大部分数学,但是,一些数学家仍然把数学应用于自然现象中,而且事实上把应用领域扩大到经济学、生物学和社会学。数学的继续有效给我们两点启示。第一点是这种有效性可用作判别正确性的准则,当然这个准则是暂时性的。今天认为正确的,也许下次应用时就会证明是错的。第二点涉及到未知。真正的数学是什么?对此并无定论。为什么数学依旧有效?我们是在用不完美的工具制造奇迹吗?如果人类已经被欺骗了,大自然也会受骗而屈服于人类的数学命令吗?显然不会。而且,正是凭借建立在数学之上的技术,人类成功地登上了月球,探测了火星和木星。这难道不是对宇宙中的数学理论的证实吗?那么,数学的人为因素与变幻莫测又何从谈起呢?当心智和灵魂迷惘不定的时候,躯体能生存下去吗?当然对于人类本身及数学,确实如此。因此我们应该去研究为什么会这样。尽管数学的基础尚不确定,数学家们的理论亦彼此冲突,而数学却已被证明成就辉煌,风采依然。
幻方(magicsquare)起源于《易》,古称九宫(龟文),乃是我国最先发现的一个著名组合算题。《易》算之于九宫,识之以天象,在古代天文、历法、农牧生产与社会生活中具有广泛的应用价值。易十数为体,八九为用,八九不离十。《易》九宫算动态组合模型(包括河图、洛书、八卦)是幻方的通解与最简模型。
一、数学史的研究对象
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
不会比较就不会思考,而且所有的科学思考与调查都不可缺少比较,或者说,比较是认识的开始。今日世界的发展是多极的,不同国家和地区、不同民族之间在文化交流中共同发展,因而随着多元化世界文明史研究的展开与西方中心论观念的淡化,异质的区域文明日益受到重视,从而不同地域的数学文化的比较以及数学交流史研究也日趋活跃。数学史的比较研究往往围绕数学成果、数学科学范式、数学发展的社会背景等三方面而展开。
二、数学史的分期
数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)。
三、数学史的意义
(1)数学史的科学意义
(2)数学史的文化意义
(3)数学史的教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
菲尔兹奖是以已故的加拿大数学家、教育家J.C.菲尔兹(FieldS)的姓氏命名的。
J.C.菲尔兹1863年5月14日生于加拿大渥太华。他11岁丧父、18岁丧母,家境不算太好,J.C.菲尔兹17岁进入多伦多大学攻读数学,24岁时在美国的约翰霍普金斯大学获博士学位,26岁任美国阿格尼大学教授。1892年到巴黎、柏林学习和工作。1902年回国后执教于多伦多大学。1907年,当选为加拿大皇家学会员。他还被选为英国皇家学会、苏联科学院等许多科学团体的成员。
第一次菲尔兹奖颁发于1936年,当时并没有在世界上引起多大注意。连许多数学专业的大学生也未必知道这个奖,科学杂志也不报道获奖者及其业绩。然而30年以后的情况就完全不一样了。每次国际数学家大会的召开,从国际主权威性的数学杂志到一般性的数学刊物,都争相报导获奖人物。菲尔兹奖的荣誉不断提高,终于被人们确认:对于青年人来说,菲尔兹奖是国际上最高的数学奖。
菲尔兹奖的一个最大特点是奖励年轻人,只授予40岁以下的数学家(这一点在刚开始时似乎只是个不成文的规定,后来则正式作出了明文规定),即授予那些能对未来数学发展起重大作用的人。
菲尔兹奖的授奖仪式,都在每次国际数学家大会开幕式上隆重举行,先由执委会主席(即评委会主席)宣布获奖名单,全场掌声雷动。接着由东道国的重要人物(当地市长、所在国科学院院长甚至国主、总统)、或评委会主席、或众望所归的著名数学家授予奖章和奖金。最后由一些权威数学家分别、逐一简要评介得奖人的主要数学成就。
从1936年开始到1990年,获菲尔兹奖的已有34人,他们都是数学天空中升起的灿烂明星、是数学界的精英。
历届菲尔兹奖得主的简况和他们的主要成就。
姓名:L.V.阿尔福斯Ahlfors(LarsValerian)。
出生日期(获奖时年龄):1907年4月18日(29岁)。
籍贯:芬兰(美藉)。
获奖年度、地点:1936年,奥斯陆。
获奖前后的工作地点:赫尔辛基大学,哈佛大学。
主要成就:证明了邓若瓦猜想;发展覆盖面理论。对黎曼面作了深入研究。
姓名:J.道格拉斯(Douglas,Jesse)。
出生日期(获奖时年龄):1897年7月3日(39岁)
籍贯:美国。
获奖年度、地点:1936年、奥斯陆。
获奖前后的工作地点:麻省理工学院
主要成就:解决普拉托极小曲面问题,即一种非线性椭圆型偏微分方程的第一边值问题;变分问题的逆问题。
姓名:L.施瓦尔兹(Schwartz,Laurent)。
出生日期(获奖时年龄):1915年6月15日(35岁)。
籍贯:法国。
获奖年度、地点:1950年、坎布里奇。
获奖前后的工作地点:南锡大学,巴黎学院。
主要成就:创立了广义函数论;对泛函分析、概率论、偏微分方面均有建树。
姓名:A.赛尔伯格(Selberg,Atle)。
出生日期(获奖时年龄):1917年6月17日(33岁)。
籍贯:挪威(美籍)。
获奖年度、地点:1950年、坎布里奇。获奖前后的工作地点:奥斯陆大学,普林斯顿高等研究所。
主要成就:数论中素数定理的初等证明和对黎曼假设的贡献;弱对黎曼空间中调和分析和不连续群及其狄里克雷级数的应用;连续群的离子群研究。
姓名:小平邦彦(KodairaKunihiko)
出生日期(奖获时年龄):1915年3月16日(39岁)。
籍贯:日本
获奖年度、地点:1954年、阿姆特斯丹。
获奖前后的工作地点:普林斯顿高等研究所。
主要成就:推广了代数几何的一条中心定理:黎曼──罗赫定理。证明了狭义卡勒流形是代数流形,得到了小平邦彦消灭定理。
姓名:J.P.塞尔(Serre,Jean-pierre)。
出生日期(获奖时年龄):1926年9月15日(28岁)。
获奖年度:地点:1954、阿姆斯特丹。
获奖前后的工作地点:巴黎大学。
主要成就:发展了纤维丛的概念,得出一般纤维的空间概念;解决了纤维、底空间、全空间的同调关系问题,并由此证明了同伦论中最重要的一般结果;除了以前知道的两种情形之外,球面的同伦群都是有限群;引进了局部化方法把求同伦群的问题加以分解,得出一系列重要结果。
姓名:K.F.罗斯(Roth,KlausFriedrich)。
出生日期(获奖时年龄):1925年10月29日(33岁)。
籍贯:德国(英藉)。
获奖年度、地点:1958年、爱丁堡。
获奖前后的工作地点:伦敦大学。
主要成就:建立了代数数有理逼近的瑟厄──西格尔──罗斯定理。
姓名:R.托姆(Thorn,Rene)。
出生日期(获奖时年龄):1923年9月2日(35岁).
获奖年度、地点:1958年、爱丁堡
获奖前后的工作地点:斯特拉斯堡大学。
姓名:L.V.霍曼德尔(Hormander,LarsValter)。
出生日期(获奖时年龄):1931年1月24日(31岁)。
籍贯:瑞典。
获奖年度、地点:1962年、斯德哥尔摩。
获奖前后的工作地点:斯德哥尔摩大学。
主要成就:常系数线性偏微分算子理论;变数系线性偏微分方程解的存在性伪微分算子理论。
姓名:J.W.米尔诺(Milnor,JohnWillard).
出生日期(获奖时年龄):1931年2月20日(31岁)。
获奖前后的工作地点:普林斯顿大学。
主要成就:微分拓扑中七维球面上存在不同微分结构的证明;否定了皮加莱主猜想;发展复配过、自旋配边理论;代数K理论和复超曲面的奇点;对代教、代数数论作出了贡献.
姓名:M.F.阿蒂雅(Atiyah,MichaeFrancis)。
出生日期(获奖时年龄):1924年4月22月(37岁)。
籍贯:英国。
获奖年度、地点:1966年、莫斯科。
获奖前后的工作地点:牛津大学。
主要成就:绘出了阿蒂雅──辛格指
标定理;为K理论的发展作出了重要贡献;解决了李群表示论、与规范场有关的代数几何中的若干问题,把不动点原理推广到一般形式。
姓名:P.J.科恩(Cohen,PaulJoseph)
出生日期(获奖时年龄):1934年4月2日(32岁)。
藉贯:美国。
获奖前后的工作地点:斯坦福大学。
主要成就:证明了连续统假设与ZF集合公理系统彼此独立,从而使连续统假设成为一种既不能证明,又不能推翻的现代逻辑工具;对抽象调和分析颇有建树。
姓名:A.格罗登迪克(Crothendieck,Alexandre)。
出生日期(获奖时年龄):1924年3月28日(38)岁。
获奖前后的工作地点:巴黎高等科学研究所。
主要成就:创立了一整套现代代数几何学抽象理论体系;在泛函分析中引入核空间、张量积;对同调代数也有建树。
姓名:S.斯梅尔(Smale,Stephen)。
出生日期(获奖时年龄):1930年7月15日(36岁)。
获奖前后的工作地点:加州大学伯克利分校。
主要成就:解决微分拓扑学中广义
庞加莱猜想;创立现代抽象微分动力系统
理论;在数理经济学和运筹学等方面也有重要贡献。
姓名:A.贝克(Baker,Alan)。
出生日期(获奖时年龄):1939年8月19日(31岁)。
获奖年度、地点:1970年、尼斯。
获奖前后的工作地点:剑桥大学。
主要成就:解决了数论中十几个历史悠久的困难问题,范围涉及超越数论、不定方程和代数数论等方面;在二次数域方面,他解决了高斯时代留下来的一个老问题,肯定了类数为1的虚二次数域只有9个。
姓名:广中平佑(HironakaHeisu-ke)。
出生日期(获奖时年龄):1931年4月9日(39岁).
籍贯:日本。
获奖前后的工作地点:哈佛大学。
主要成就:完全解决了任何维数的代数簇的寄点解泪问题,建立了相应定理,并把这一结果向复流形推广,对一般奇点理论作出了贡献。
姓名:S.P.诺维科夫(Novikov,S.P.)
出生日期(获奖时年龄):1938年3月20日(32岁).
籍贯:苏联。
获奖年度、地点:1970年尼斯。
获奖前后的工作地点:斯捷克洛夫数学研究所。
主要成就:微分拓扑学配边理论,叶状结构理论;证明了微分流形有理庞特里亚金示性类的拓扑不变性;孤立子理论。
姓名:J.G.汤普逊(Thompson,JohnGrggs)。
出生日期(获奖时年龄):1932年10月13日(38岁)。
籍贯:美国.
获奖前后的工作地点:芝加哥大学
主要成就:解决有限单群的伯恩赛德猜想和弗洛贝纽斯猜想,在有限群论方面作出了重要贡献。
姓名:D.B.曼福德(Mumford,DavidBryart)。
出生日期(获奖时年龄):1937年6月11日(37岁)。
籍贯:英国(美籍)。
获奖年度、地点:1974年、温哥华。
主要成就:代数几何学参模理论,他创造性地应用了不变式理论,导致许多新结果,并由此产生了几何不变式论;证明了代数曲面与代数曲线和高维代数簇有一个不同之处,对代数曲面的分类作出了贡献。
姓名:E.庞比里(Bombieri,Enrico)。
出生日期(获奖时年龄):1940年11月26日(34岁)。
籍贯:意大利。
获奖前后的工作地点:米兰大学、比萨大学。
主要成就:改进数论大筛法,得出了所谓庞比里中值公式,证明了哥德巴赫猜想中的(1+3);对极小曲面问题的伯恩斯坦猜想提出了反例;有限单群分类问题中一类李型单样的唯一性证明。
姓名:C.费弗曼(Fefferman,Charles)。
出生日期(获奖时年龄):1949年4月18日(29岁)。
获奖年度、地点:1978年、赫尔辛基。
主要成就:傅立叶级数收敛问题及其与奇异积分算子的联系;发现哈代空间H1与有界平均振动函数空间BMO的对偶关系;给出非退化线性偏微分方程局部可解性的一个充分必要条件;证明一个具有光滑边界的严格伪凸域到另外一个的双全纯映射可以光滑地延拓到边界上。
姓名:P.德利汉(Deligne,Pierre)。
出生日期(获奖时年龄):1944年10月3日(34岁)。
籍贯:比利时。
获奖年度、地点:1978年赫尔辛基。
姓名:D.奎伦(Quillen,Daniel)。
出生日期(获奖时年龄):1940年4月20日(38岁)。
获奖前后的工作地点:马萨诸塞理工学院。
主要成就:解决了代数X理论中亚当斯猜想;得到K理论中塞尔猜想的证明,并开始将代数归结为拓扑,复配边理论与形成代数K理论的基础。他还在同伦理论,形式群理论,同调代数一有限群的上同调论等方面取得重要成果。
姓名:G.A.马古利斯(Margulis,G.A.)
出生日期(获奖时年龄):1946年2月24日(32岁)。
获奖前后的工作地点:莫斯科通讯研究所。
主要成就:综合地利用代数、分析和数论的近代成果,特别是各态遍历性理论,彻底解决了关于李群的离散子群的赛尔伯格猜想。
姓名:A.孔耐(Connes,Alan)。
出生日期(获奖时年龄):1947年4月1日(35岁)。
获奖年度、地点:华沙。
主要成就:从事算子代数研究,引进了新的不变量,将Ⅲ型代数分为子类,进一步把这些代数旧结为Ⅱ型代数及其自同构,然后按外自同构进行系统归类,从根本上解决了J.冯诺依曼留下的代数分类问题。
姓名:W.色斯顿(Thurston,William)。
出生日期(获奖时年龄):1946年10月30日(36岁).
获奖年度、地点:1983年、华沙。
主要成就:讨论了三维流形上的叶状结构,并对一般流形上叶状结构的存在、性质及其分类得出了普遍的结果;他借助于电子计算机:基本完成了三维闭流形的拓扑分类。
姓名:丘成桐(YanSheng-tung)。
出生日期(获奖时年龄):1949年4月4日(33岁)。
籍贯:中国(美籍)。
主要成就:证明微分几何中的卡拉比猜想;证明了广义相对论中的正质量猜想;并在高维闵科夫斯基问题、三维流形的拓朴学与极小曲面等方面均有创见。
姓名:S.唐纳森(Donaldson,simon)。
出生日期(获奖时年龄):1957年8月20日(29岁)。
获奖年度、地点:1986年、伯克利。
姓名:G.福尔廷斯(Faltings,Gerd)。
出生日期(获奖时年龄):1954年7月25日(32岁)。
籍贯:德国。
获奖前后的工作地点:普林斯顿大学,乌珀塔尔大学。
主要成就:用代数几何学方法证明了数论中的莫德尔猜想;他对阿贝簇的参模空间、算术曲面的黎曼──定理、Padic霍奇理论等也有创见。
姓名:M.弗里德曼(Freedman,Michael)。
出生日期(获奖时年龄):1951年4月21日(35岁)。
获奖前后的工作地点:加利福利亚大学,加州大学圣地亚哥分校。
主要成就:证明了四维流形拓扑的庞加莱猜想,因而刻划了球面S1,并且提供了对再一般的四维流形的、容易陈述但证明很难的分类定理;对偏微分方程、相对论也有建树。
出生日期(获奖时年龄);1954年(36岁)。
获奖年度、地点:1990年、东京。
获奖前后的工作地点:哈尔科夫低温物理研究所。
姓名:F.R.J.沃思(Vaughan,F.R.Jones)。
出生日期(获奖年龄)1953年(37岁)
籍贯:新西兰。
主要成就:扭结理论。他的工作与纽曼代数中的因子分数有关,他发现了合痕的一个不变量,它是一个和1/的多项式(g是一个变量):两个同痕的结有相同的不变量。
姓名:森重文(ShigffumiMorD。
出生日期(获奖时年龄):1951年2月23日(39岁)。
获奖前后的工作地点:京都数学科学研究所。
姓名:E.威滕(Witten,Edward)。
出生日期(获奖时年龄):1951年(38岁)。
由于菲尔兹奖只授予40岁以下的的年轻数学家,所以年纪较大的数学家没有获奖的可能。恰巧1976年1月,R.沃尔夫及其家族捐献一千万美元成立了沃尔夫基金会,其宗旨是为了促进全世界科学.艺术的发展。沃尔夫基金会设有:数学.物理.化学.医学.农业五个奖(1981年又增设艺术奖)。1978年开始颁发,通常是每年颁发一次,每个奖的奖金为10万美元,可以由几人分得。由于沃尔夫数学奖具有终身成就奖的性质,所有获得该奖项的数学家都是享誉数坛.闻名遐迩的当代数学大师,他们的成就在相当程度上代表了当代数学的水平和进展。该奖的评奖标准不是单项成就而是终身贡献,获奖的数学大师不仅在某个数学分支上有极深的造诣和卓越贡献,而且都博学多能,涉足多个分支,且均有建树,形成了自己的著名学派,他们是当代不同凡响的数学家。
数学中的皇冠——数论人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们和起来叫做整数。
对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。
人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。
数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。
数论的发展简况
自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。
自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题──整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。
到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。
在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。
数论的基本内容
数论形成了一门独立的学科后,随着数学其他分支的发展,研究数论的方法也在不断发展。如果按照研究方法来说,可以分成初等数论、解析数论、代数数论和几何数论四个部分。
代数数论是把整数的概念推广到代数整数的一个分支。数学家把整数概念推广到一般代数数域上去,相应地也建立了素整数、可除性等概念。
数论是一门高度抽象的数学学科,长期以来,它的发展处于纯理论的研究状态,它对数学理论的发展起到了积极的作用。但对于大多数人来讲并不清楚它的实际意义。
我们仔细研究一下,就知道这两种量是紧密联系着的。
这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。
现代数学上的三大难题:
一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。
归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。
数学家名中英文对照Weierstrass魏尔斯特拉斯(古典分析学集大成者,德国人)
Cantor康托尔(Weiestrass的学生,集合论的鼻祖)
Bernoulli伯努力(这是一个17世纪的家族,专门产数学家)
Fatou法都(实变函数中有一个Fatou引理)
S.Lie李(创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler欧拉(后来双目失明了,但是其伟大很少有人能与之相比)
Gauss高斯(不需要说明,Gauss就是Gauss)
Sturm斯图谟(那个Liouvel-Sturm定理的人)
Riemann黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton牛顿(名字带牛,实在是牛,非常牛,就因为那个苹果)
Jordan约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace拉普拉斯(这人的东西太多了,到处都有,我差点把他当足球明星了)
Wiener维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事,也是个数学家吧?)
Maxwell麦克斯韦(电磁学中的Maxwell方程组)
Riesz黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether诺特(最最伟大的女数学家,抽象代数之母)
Kepler开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel波莱尔(学过数学分析和实分析都知道此人)
Sobolev所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan拉曼奴阳(天资异禀,死于思乡病)
Ljapunov李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder赫尔得(Holder不等式,L-p空间里的那个)
Poisson泊松(概率中的Poisson过程,也是纯数学家)
Nikodym发音很难的说(有著名的Ladon-Nikodym定理)
H.Hopf霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras毕达哥拉斯(就是勾股定理在西方的发现者)
Baire贝尔(著名的Baire纲)
Haar哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat费马(Fermat大定理,最牛的业余数学家,吹牛很在行的)
Kronecker克罗内克(牛人克星,迫害Cantor至疯人院)
E.Laudau朗道(巨富的数学家,解析数论超牛)
Markov马尔可夫(Markov过程)
Wronski朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche儒契(在复变中有Rouche定理Rouche函数)
Taylor泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个,我指的就是那个)
Urysohn乌里松(在拓扑中有著名的Urysohn定理)
数字本身有深刻的美的内容。数字和一些美好事物联系在一起,会给人以美的享受。如十个数字:一元复始,一帆风顺;双喜临门、二度梅开;三阳开泰、三思而行;四通八通、四海为家;五世其昌、五官端正;六根清净、六艺、六韬、六合、六极;七情六欲、七曜、七略;八面玲珑、八面威风、八仙、八卦;九霄云外、九转金丹;十全十美。
广为传颂的《秀才进京赶考》与《文君复书》,把数字用活,体现了数字别具一格的神韵美。《秀才进京赶考》,是说明朝时有一位穷书生,历尽千辛万苦赶往京城应试,由于交通不便,赶到京城时,试期已过。经他苦苦哀求,主考官让他先从一到十,再从十到一作一对联。穷书生想起自己的身世,当即一气呵成:
一叶孤舟,坐着二三个骚客,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟。十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番二次,今天一定要中。
几十载的人生之路,通过十个数字形象深刻地表现出来了。主考官一看,拍案叫绝,并把他排在榜首。
一别以后,二地相悬,只说三四个月,又谁知五年六年。七弦琴无心弹,八行书无可传,九连环又从中折断,十里长亭望眼欲穿,百思想,千思念,万般无奈把郎怨。万语千言说不完,百无聊赖十依栏,重九登高看孤雁,八月中秋月圆人不圆,七月半烧香秉烛问苍天,六伏天人人摇扇我心寒,五月石榴火红偏遭阵阵雨浇花端,四月枇杷未黄我欲对镜心意乱。急匆匆,三月桃花随水转,飘零零,二月风筝线儿断。噫!郎呀郎,巴不得下一世你为女来我为男。
还有一些数字,往往要通过计算。通过不同数字的组合,才可以得到一些非常奇妙的排列,令人看后叫绝,回味无穷。
数学是一门同人民大众贴得很近的学科,它所讨论的宇宙,远比现实的所谓宇宙宏伟雄大。通常所说的宇宙只是三维空间,而数学则建立起了四维、五维乃至n维空间,并且,集合论的超限数的空间,远远超过了通常无穷大的空间,它们都远比我们现实的宇宙更具有庄严美、雄伟美。数学是一座远远地超越了我们想象的华丽宫殿,站在这个无比庄严、宏伟的宇宙中的数学家们,以崇敬赞叹的目光远眺着它的壮观、美妙,那些能够感受到这种数学美、宇宙美的人,是可以被称为爱因斯坦所谓的有宇宙宗教性的人。
一、解析几何的产生
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。
二、解析几何的基本内容
在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
三、解析几何的应用
解析几何又分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。
总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。
一、解析几何的建立
一句话,科学的需要和对方法论的兴趣,推动了费尔马和笛卡尔对坐标几何的研究。
费尔马关于曲线的工作,是从研究古希腊几何学家,特别是阿波罗尼(Apollonius)开始的。阿波罗尼的《论平面轨迹》一书久已失传,而费尔马是把它重新写出来的人之一。他用代数来研究曲线。他说,他打算发起一个关于轨迹的一般研究,在这种研究是古希腊人没做到的。1629年他写了一本《平面和立体的轨迹引论》(1679年发表),书中说,他找到了一个研究有关曲线问题的普遍方法。
费尔马的坐标几何研究怎样产生的,我们不知道,很可能把阿波罗尼的结果,直接翻译成代数的形式。他考虑任意曲线和它上面的一般点J,J的位置用A、E两个字母定出:A是从原点O沿底线到点Z的距离,E是从Z到J的距离。它所用的坐标,就是我们现在的斜坐标。但是Y轴没有明白出现,而且不用负数,它的A,E就是我们现在的X,Y.
1637年笛卡尔写的《更好地指导推理和寻求科学真理的方法论》一书出版,这是一本文学和哲学的经典著作,包括三个著名的附录:《几何》、《折光》和《陨星》。《几何》是他所写的唯一一本数学书,他关于坐标几何的思想,就包括在它的这本《几何》中。笛卡尔的其他著作有《思想的指导法则》,《世界体系》,《哲学原理》,《音乐概要》。
笛卡尔是通过三个途径来研究数学的,作为一个哲学家,他把数学方法看作是在一切领域建立真理的方法来研究。作为自然科学的研究者,它广泛地研究了力学、水静力学、光学和生物学等各个方面,它的《几何》的一部分和《折光》都是讲光学的。作为一个关心科学用途的人,他强调把科学成果付之应用。在这一点上,他同希腊人明白地公开决裂。由于他注意到数学的力量,他就是要去寻找数学的用途。他不推崇纯粹数学,他认为数学不是思维训练,而是一门建设性的有用科学。他认为把数学方法用到数学本身是没有价值的,因为这不算是研究自然。那些为数学而搞数学的人,是白费精力的盲目研究者。
笛卡尔对当时几何和代数的研究方法进行了分析和比较,他认为没有任何东西比几何图形更容易印入人的脑际了。因此用这种方式表达事物是非常有益的,但他对欧几里德几何中的每一个证明都要求某种新的往往是奇巧的想法,这一点深感不安。他还批评希腊人的几何过多地依赖于图形。他完全看到了代数的力量,看到他在提供广泛的方法论方面,高出希腊人的几何方法。他同时强调代数的一般性,以及它把程序机械化和把解题工作量减小的价值。他看到代数具有作为一门普遍的科学方法的潜力。他对当时通行的代数也加以批评,说它完全受公式和法则的控制,不像一门改进思想的科学。因此它主张采取代数和几何中一切最好的东西,互相以长补短。它所作的工作就是把代数用到几何上去。在这里,他对方法的普遍兴趣和他对代数的专门知识,就组成了联合力量,于是就产生了它的《几何》一书。
在《几何》一书中,他开始仿照韦达(Vjeta)的方法,用代数解决几何作图题,后来才逐渐出现了用方程表示曲线的思想。
在《几何》第一卷的前一半中,笛卡尔用代数解决的只是古典的几何作图题,这只不过是代数在几何上的一个应用,并不是现代意义下的解析几何。
笛卡尔的做法,是选定一条直线作为基线,以点A为原点,x值是基线上从A量起一个线段的长度。y是由基线出发与基线作成一个固定角度的一个线段的长度。这个坐标系我们现在叫作斜角坐标系。笛卡尔的x、y只取正值,即图形在第一象限内。
有了曲线方程的思想之后,笛卡尔进一步发展了它的思想。
1、曲线的次数与坐标轴的选择无关。
2、同一坐标系中两个曲线的方程联立,可解出交点。
从上面的叙述我们可以看出,费尔马和笛卡尔良人各自都研究了坐标几何,但他们研究的目的和方法却有明显不同。费尔马着眼于继承古希腊的思想,认为自己的工作是重新表述了阿波罗尼的工作。而笛卡尔批评了希腊人的传统,主张和这个传统决裂。虽然用方程表示曲线的思想,在费尔马的工作中更为明显,但应该说真正发现代数方法的威力的是笛卡尔。
有种种原因,使坐标几何的思想──用代数方程表示并研究曲线的思想,在当时没有很快地被数学家们热情地接受并利用。
影响坐标几何被迅速接收的原因,还有一个是许多数学家反对把代数和几何结合起来,认为数量运算和几何量的运算要加以区别,不能混淆。再一个原因是当时代数被认为是缺乏严密性的。
上述种种原因,虽然阻碍了对费尔马和笛卡尔的贡献的了解,但也有很多人逐渐采用并扩展了坐标几何。
二、解析几何的重要性
解析几何出现以前,代数已有了相当大的进展,因此解析几何不是一个巨大的成就,但在方法论上却是一个了不起的创建。
1、笛卡尔希望通过解析几何引进一个新的方法,他的成就远远超过他的希望。在代数的帮助下,不但能迅速地证明关于曲线的某些事实,而且这个探索问题的方式,几乎成为自动的了。这套研究方法甚至是更为有利的。用字母表示正数、负数,甚至以后代表复数时,就有了可能把综合几何中必须分别处理的情形,用代数统一处理了。例如,综合几何中证明三角形的高交于一点时,必须分别考虑交点在三角形内和三角形外,而解析几何证明时,则不须加区别。
3、解析几何的显著优点在于它是数量工具。这个数量工具是科学的发展久已迫切需要的。十七世纪一直公开要求着的,例如当开普勒发现行星沿椭圆轨道绕着太阳运动,伽利略发现抛出去的石子沿着抛物线的轨道飞出去时就必须计算这些椭圆和炮弹飞时所画的抛物线了。这些都需要提供数量的工具,研究物理世界,似乎首先需求几何。物体基本上是几何的形象,运动物体的路线是曲线,研究它们都需要数量知识。而解析几何能使人把形象和路线表示为代数形式,从而导出数量知识。
三、一点启示
解析几何的重要性在于他的方法──建立坐标系,用方程来表示曲线,通过研究方程来研究曲线。
由于解析几何方法解决各类问题的普遍性,它已成为几何研究中的一个基本方法。不仅如此,它还被广泛应用于其他精确的自然科学领域,如力学和物理学之中。
因此我们学习解析几何,主要是掌握它的基本思想、基本方法,而不仅仅在于记住它的某些具体结论。
解析几何的基本方法,包括两个方面:一是由图形到方程,二是从方程到图形,也就是选择坐标系,建立图形方程。通过对方程的研究得到图形的性质,了解图形的形状。
解析几何离不开代数,但又要随时把各种代数表示的几何涵义放在心中。学习中要特别注意,培养自己的几何直观能力。这种能力对于数学的学习是极为重要的。
一、集合论的诞生
集合论是德国著名数学家康托尔于19世纪末创立的。
二、康托尔的不朽功绩
三、公理化集合论的建立
它是对无限最深刻的洞察,它是数学天才的最优秀作品,是人类纯智力活动的最高成就之一。
超限算术是数学思想的最惊人的产物,在纯粹理性的范畴中人类活动的最美的表现之一。
这个成就可能是这个时代所能夸耀的最伟大的工作。
康托尔的无穷集合论是过去两千五百年中对数学的最令人不安的独创性贡献之一。
1什么叫极限法
所谓极限法,是指用极限概念分析问题和解决问题的一种数学方法.极限法的一般步骤可概括为:对于被考察的未知量,先设法构思一个与它有关的变量,确认这变量通过无限过程的结果就是所求的未知量;最后用极限计算来得到这结果.极限法不同于一般的代数方法,代数中的加、减、乘、除等运算都是由两个数来确定出另一个数,而在极限法中则是由无限个数来确定一个数.很多问题,用常量数学的方法无法解决,却可用极限法解决.
在该题中,为了推导所求抛物弓形的面积,必须借助于极限法.
2极限法思想是从哪儿来的
与一切科学方法一样,极限法也是社会实践的产物.
极限法的进一步发展与微积分的建立紧密联系.16世纪的欧洲处于资本主义萌芽时期,生产力得到很大的发展,生产和技术中大量的问题,只用初等数学的方法已无法解决,要求数学突破只研究常量的传统范围,而提供能够用以描述和研究运动、变化过程的新工具,这是促进极限发展、建立微积分的社会背景.
贝克莱之激烈攻击微积分,一方面是为宗教服务,另一方面也由于当时的微积分缺乏牢固的理论基础,连牛顿自己也无法摆脱极限概念中的混乱.这个事实表明,弄清极限概念,建立严格的微积分理论基础,不但是数学本身所需要而且有着认识论上的重大意义.
3极限法的完善
极限法的完善与微积分的严格化密切联系.
综上所述可见,极限法的引入与完善是出于社会实践的需要,是几代人奋斗的结果,不是哪一个数学家苦思冥想出来的.
4极限法的思维功能
参考文献
1周述岐.数学思想和数学哲学.北京:中国人民大学出版社,1993