奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
)38、过抛物线焦点的弦长pxxpxpxAB++=+++=212122.六、立体几何39.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.40.证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.41.证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.42.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.43.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面。
44.证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直;45、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=rlπ2,表面积=222rrlππ+圆椎侧面积=rlπ,表面积=2rrlππ+13VSh=柱体(S是柱体的底面积、h是柱体的高).13VSh=锥体(S是锥体的底面积、h是锥体的高).球的半径是R,则其体积343VRπ=,其表面积24SRπ=.46、若点A111(,,)xyz,点B222(,,)xyz,则,ABd=||ABABAB==47、点到平面距离的计算(定义法、等体积法)48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。
正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。
七、概率统计49、平均数、方差、标准差的计算平均数:nxxxxn++=21方差:])()()[(1222212xxxxxxnsn-+-+-=标准差:])()()[(122221xxxxxxnsn-+-+-=50、回归直线方程(了解即可)yabx=+,其中()()()1122211nniiiiiinniiiixxyyxynxybxxxnxaybx====---==--=-∑∑∑∑.经过(x,y)点。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线互相平行。
空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点直线、平面平行的判定及其性质pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假共面直线(0,)2π直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。
直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
直线、平面垂直的判定及其性质直线与平面垂直的判定1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。
如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭lβBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。
2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。