大数据分析处理关键技术有哪些

数据处理是提取大量和复杂的海量数据的价值,其中最有价值的部分在于预测分析,即通过数据可视化、统计模式识别、数据描述和其他数据挖掘形式,帮助数据科学家更好地理解数据,并根据数据挖掘的结果获得预测决策。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

大数据采集一般分为:

1)大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。

2)基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

完成对已接收数据的辨析、抽取、清洗等操作。

1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。

2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术:改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

四、大数据分析及挖掘技术

大数据分析技术:改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘涉及的技术方法很多,有多种分类法。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象可分为关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web;根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。

数据挖掘主要过程是:根据分析挖掘目标,从数据库中把数据提取出来,然后经过ETL组织成适合分析挖掘算法使用宽表,然后利用数据挖掘软件进行挖掘。传统的数据挖掘软件,一般只能支持在单机上进行小规模数据处理,受此限制传统数据分析挖掘一般会采用抽样方式来减少数据分析规模。

大数据分析处理关键技术有哪些中琛魔方大数据分析平台(www.zcmorefun.com)表示数据挖掘的计算复杂度和灵活性远远超过前两类要求。一是由于数据挖掘问题的开放性,数据挖掘将涉及大量的派生变量,而派生变量的多变性将导致数据预处理计算的复杂性;第二,许多数据挖掘算法本身比较复杂,计算量很大,特别是大量的机器学习算法,它们是迭代计算,需要通过多次迭代找到最优解。

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn为特定的业务任务选择最佳算法很有挑战性。您可以使用不同的算法来执行同样的业务任务,每个算法会生成不同的结果,而某些算法还会生成多种类型的结果。例如,您不仅可以将 Microsoft 决策数算法用于预测,而且还可以将它用作一种减少数据集的列数的方法,因为决策树能够识别出不影响最终挖掘模型的列。 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
3.数据挖掘之七种常用的方法经管文库(原现金交易docx 203.39 KB0个论坛币 GDP和人均GDP平减说明.xls 27 KB0个论坛币 关键词:数据挖掘 https://bbs.pinggu.org/thread-13312809-1-1.html
4.数据挖掘的过程和方法数据挖掘的过程和方法 我折腾了好久数据挖掘这事儿,总算找到点门道。说实话,一开始我也是瞎摸索。 我先跟你说啊,数据挖掘嘛,第一步得确定目标。这就好比你要去旅行,你得先知道你想去哪对吧。我之前就没整明白这个,随便找了些数据就开始挖,结果挖出来的东西根本没什么用,白忙活一场。所以说确定好你要挖掘https://wenku.baidu.com/view/7f1168947075a417866fb84ae45c3b3567ecddb0.html
5.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
6.数据挖掘技术主要包括哪些?数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归https://m.imooc.com/wenda/detail/508957
7.数据挖掘的主要方法和技术在本文中,我们将详细介绍数据挖掘的主要方法和技术,包括数据清洗、数据预处理、数据可视化、数据分析、数据模型构建、数据评估和优化等。 2.核心概念与联系 在数据挖掘中,有一些核心概念和联系需要我们了解和掌握。这些概念和联系包括: 1.数据:数据是数据挖掘的基础,是我们需要分析和挖掘信息的原始物料。数据可以是结构https://blog.csdn.net/universsky2015/article/details/137334966
8.数据挖掘的主要技术主要有这些,看完就知道数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。 通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。 那数据挖掘的主要技术有哪些呢,今天就跟大家谈谈数据挖掘的主要技术有哪些: 1、模式跟踪 模式跟踪是数据挖掘的一项基本技术。模式跟踪旨在通过识别和监视数据https://www.fanruan.com/bw/faeggrg
9.电子商务毕业论文(精选6篇)随着电子商务的兴起,Web方式的应用系统发展迅速,它将成为电子商务技术领域的主流。在电子商务应用系统中,目前普遍采用的是三层C/S结构,即表示层、业务层和数据层。这种结构使软件测试人员能采用“局部分层测试”和“系统整体测试”想结合的方法,对应用系统进行测试。即先对每一层进行独立的测试,再开展系统整体测试,这https://biyelunwen.yjbys.com/fanwen/dianzishangwu/727563.html
10.7种常用的数据挖掘技术分享开源地理空间基金会中文分会开放有很多模型可用于快速理解复杂数据; 较快的速度能够让用户在更短的时间内轻松分析大量数据; 产生改进的预测。 7种重要的数据挖掘技术 数据挖掘中最重要的任务之一是选择正确的数据挖掘技术。数据挖掘技术必须根据业务类型和业务面临的问题进行选择。因此必须使用一种通用的方法来提高使用数据挖掘技术的准确性和成本效益。https://www.osgeo.cn/post/14c56
11.大数据金融第二章大数据相关技术第一节 大数据处理流程 首先是利用多种轻型数据库收集海量数据,对不同来源的数据进行预处理后,整合存储到大型数据库中,然后根据企业或个人目的和需求,运用合适的数据挖掘技术提取有https://www.jianshu.com/p/d68251554c66
12.数据挖掘:概念与技术(原书第3版)PDF扫描版电子书下载本书完整全面地讲述数据挖掘的概念、方法、技术和最新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 https://www.jb51.net/books/155804.html
13.数据挖掘论文在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全https://www.unjs.com/lunwen/f/20220924130749_5650839.html