下面介绍十种数据挖掘(DataMining)的分析方法,以便于大家对模型的初步了解,这些都是日常挖掘中经常遇到的算法,希望对大家有用!(甚至有数据挖掘公司,用其中的一种算法就能独步天下)
1、基于历史的MBR分析(Memory-BasedReasoning;MBR)
基于历史的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。
记忆基础推理法中有两个主要的要素,分别为距离函数(distancefunction)与结合函数(combinationfunction)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。记忆基础推理法的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。
2、购物篮分析(MarketBasketAnalysis)
购物篮分析基本运作过程包含下列三点:
(1)选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。
(2)经由对共同发生矩阵(co-occurrencematrix)的探讨挖掘出联想规则。
购物篮分析技术可以应用在下列问题上:
(1)针对信用卡购物,能够预测未来顾客可能购买什么。
(2)对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。
(3)保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。
(4)对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。
3、决策树(DecisionTrees)
决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。
4、遗传算法(GeneticAlgorithm)
遗传算法学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitnessfunction)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集(cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。
5、聚类分析(ClusterDetection)
这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。
6、连接分析(LinkAnalysis)
7、OLAP分析(On-LineAnalyticProcessing;OLAP)
严格说起来,OLAP分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。
8、神经网络(NeuralNetworks)
9、判别分析(DiscriminantAnalysis)
当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。若因变量由两个群体所构成,称之为双群体—判别分析(Two-GroupDiscriminantAnalysis);若由多个群体构成,则称之为多元判别分析(MultipleDiscriminantAnalysis;MDA)。
(2)检定各组的重心是否有差异。
(3)找出哪些预测变量具有最大的区别能力。
(4)根据新受试者的预测变量数值,将该受试者指派到某一群体。
10、罗吉斯回归分析(LogisticAnalysis)
当判别分析中群体不符合正态分布假设时,罗吉斯回归分析是一个很好的替代方法。罗吉斯回归分析并非预测事件(event)是否发生,而是预测该事件的机率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协率开始减小,故机率值介于0与1之间。