数据挖掘最常见的十种方法赵哲丽

下面介绍十种数据挖掘(DataMining)的分析方法,以便于大家对模型的初步了解,这些都是日常挖掘中经常遇到的算法,希望对大家有用!(甚至有数据挖掘公司,用其中的一种算法就能独步天下)

1、基于历史的MBR分析(Memory-BasedReasoning;MBR)

基于历史的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

记忆基础推理法中有两个主要的要素,分别为距离函数(distancefunction)与结合函数(combinationfunction)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。记忆基础推理法的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

2、购物篮分析(MarketBasketAnalysis)

购物篮分析基本运作过程包含下列三点:

(1)选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

(2)经由对共同发生矩阵(co-occurrencematrix)的探讨挖掘出联想规则。

购物篮分析技术可以应用在下列问题上:

(1)针对信用卡购物,能够预测未来顾客可能购买什么。

(2)对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。

(3)保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。

(4)对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

3、决策树(DecisionTrees)

决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元树、三元树或混和的决策树型态。

4、遗传算法(GeneticAlgorithm)

遗传算法学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitnessfunction)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集(cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

5、聚类分析(ClusterDetection)

这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

6、连接分析(LinkAnalysis)

7、OLAP分析(On-LineAnalyticProcessing;OLAP)

严格说起来,OLAP分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。

8、神经网络(NeuralNetworks)

9、判别分析(DiscriminantAnalysis)

当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决分类的问题上面。若因变量由两个群体所构成,称之为双群体—判别分析(Two-GroupDiscriminantAnalysis);若由多个群体构成,则称之为多元判别分析(MultipleDiscriminantAnalysis;MDA)。

(2)检定各组的重心是否有差异。

(3)找出哪些预测变量具有最大的区别能力。

(4)根据新受试者的预测变量数值,将该受试者指派到某一群体。

10、罗吉斯回归分析(LogisticAnalysis)

当判别分析中群体不符合正态分布假设时,罗吉斯回归分析是一个很好的替代方法。罗吉斯回归分析并非预测事件(event)是否发生,而是预测该事件的机率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协率开始减小,故机率值介于0与1之间。

THE END
1.数据挖掘算法(AnalysisServices–数据挖掘)MicrosoftLearn为特定的业务任务选择最佳算法很有挑战性。您可以使用不同的算法来执行同样的业务任务,每个算法会生成不同的结果,而某些算法还会生成多种类型的结果。例如,您不仅可以将 Microsoft 决策数算法用于预测,而且还可以将它用作一种减少数据集的列数的方法,因为决策树能够识别出不影响最终挖掘模型的列。 https://technet.microsoft.com/zh-cn/library/ms175595(v=sql.100).aspx
2.数据挖掘的分析方法可以划分为关联分析序列模式分析分类分析和数据挖掘是从大量数据中提取有用信息的方法,主要分为四种分析方式:关联分析、序列模式分析、分类分析和聚类分析。在本指南中,我们将详细介绍这四种方法的实现过程,并提供相应的代码示例。 数据挖掘流程 首先,我们需要明确数据挖掘的基本流程,如下表所示: 流程图 https://blog.51cto.com/u_16213297/12863680
3.数据挖掘之七种常用的方法经管文库(原现金交易docx 203.39 KB0个论坛币 GDP和人均GDP平减说明.xls 27 KB0个论坛币 关键词:数据挖掘 https://bbs.pinggu.org/thread-13312809-1-1.html
4.数据挖掘的过程和方法数据挖掘的过程和方法 我折腾了好久数据挖掘这事儿,总算找到点门道。说实话,一开始我也是瞎摸索。 我先跟你说啊,数据挖掘嘛,第一步得确定目标。这就好比你要去旅行,你得先知道你想去哪对吧。我之前就没整明白这个,随便找了些数据就开始挖,结果挖出来的东西根本没什么用,白忙活一场。所以说确定好你要挖掘https://wenku.baidu.com/view/7f1168947075a417866fb84ae45c3b3567ecddb0.html
5.商战数据挖掘:你需要了解的数据科学与分析思维数据科学的一条重要原则是,数据挖掘的流程可以分解为几个通俗易懂的环节。有些环节涉及信息技术的应用,如数据中模式的自动发现和评估,而有些则主要依赖数据分析师的创意、常识和商业知识。理解数据挖掘的整个过程,有助于组织数据挖掘项目,使它们更接近系统性的分析,而不是凭借运气和个人智慧的冒险行为。 https://www.ituring.com.cn/book/tupubarticle/28952
6.数据挖掘技术主要包括哪些?数据挖掘的技术,可分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归https://m.imooc.com/wenda/detail/508957
7.数据挖掘的主要方法和技术在本文中,我们将详细介绍数据挖掘的主要方法和技术,包括数据清洗、数据预处理、数据可视化、数据分析、数据模型构建、数据评估和优化等。 2.核心概念与联系 在数据挖掘中,有一些核心概念和联系需要我们了解和掌握。这些概念和联系包括: 1.数据:数据是数据挖掘的基础,是我们需要分析和挖掘信息的原始物料。数据可以是结构https://blog.csdn.net/universsky2015/article/details/137334966
8.数据挖掘的主要技术主要有这些,看完就知道数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。 通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。 那数据挖掘的主要技术有哪些呢,今天就跟大家谈谈数据挖掘的主要技术有哪些: 1、模式跟踪 模式跟踪是数据挖掘的一项基本技术。模式跟踪旨在通过识别和监视数据https://www.fanruan.com/bw/faeggrg
9.电子商务毕业论文(精选6篇)随着电子商务的兴起,Web方式的应用系统发展迅速,它将成为电子商务技术领域的主流。在电子商务应用系统中,目前普遍采用的是三层C/S结构,即表示层、业务层和数据层。这种结构使软件测试人员能采用“局部分层测试”和“系统整体测试”想结合的方法,对应用系统进行测试。即先对每一层进行独立的测试,再开展系统整体测试,这https://biyelunwen.yjbys.com/fanwen/dianzishangwu/727563.html
10.7种常用的数据挖掘技术分享开源地理空间基金会中文分会开放有很多模型可用于快速理解复杂数据; 较快的速度能够让用户在更短的时间内轻松分析大量数据; 产生改进的预测。 7种重要的数据挖掘技术 数据挖掘中最重要的任务之一是选择正确的数据挖掘技术。数据挖掘技术必须根据业务类型和业务面临的问题进行选择。因此必须使用一种通用的方法来提高使用数据挖掘技术的准确性和成本效益。https://www.osgeo.cn/post/14c56
11.大数据金融第二章大数据相关技术第一节 大数据处理流程 首先是利用多种轻型数据库收集海量数据,对不同来源的数据进行预处理后,整合存储到大型数据库中,然后根据企业或个人目的和需求,运用合适的数据挖掘技术提取有https://www.jianshu.com/p/d68251554c66
12.数据挖掘:概念与技术(原书第3版)PDF扫描版电子书下载本书完整全面地讲述数据挖掘的概念、方法、技术和最新研究进展。本书对前两版做了全面修订,加强和重新组织了全书的技术内容,重点论述了数据预处理、频繁模式挖掘、分类和聚类等的内容,还全面讲述了OLAP和离群点检测,并研讨了挖掘网络、复杂数据类型以及重要应用领域。 https://www.jb51.net/books/155804.html
13.数据挖掘论文在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全https://www.unjs.com/lunwen/f/20220924130749_5650839.html