高内涵筛选技术的原理及其在生态毒理学的应用

随着现代工业进步,人类合成、使用和间接产生的化合物的数量和种类在不断增长,其中包括了化工原料、阻燃剂、农药、增塑剂、食品添加剂、药物、天然化合物及衍生物、饮用水消毒副产物和化学合成副产物等多个类别[1-2]。然而由于在对化合物毒性作用方面认识的不足,绝大多数的化合物缺乏有效监管,部分化合物因此能够以直接或间接的方式进入环境,成为环境污染物。事实上,根据美国国家毒理规划处(NTP)生物分子筛选部负责人Tice等[2]在2013年的估计,至少有数万种存在于环境中的污染物仍然缺乏足够的毒理学数据来预测其对人类和生态系统的影响。所以在生态毒理学领域,对这些化合物展开环境危害性和毒理特性鉴定,进行风险管理显得尤为必要而迫切。为此,美国环境保护局(EPA)在2011年已开始推进新一代的健康风险评估(NexGen)项目,NexGen项目强调了体外高通量毒性筛选在揭示化合物毒性作用机制方面的重要性[3],而该项目的实施对中国的毒理学发展具有借鉴意义。

模式动物的活体毒性测试由于通量低、成本高和周期长已不能满足当前巨量化合物毒性评价的需要,为了应对毒理学领域所面临的新挑战,2007年加拿大国家研究委员会(NRC)的“21世纪毒性测试:一种远见与策略”报告[4]为毒理学领域新世纪的发展奠定了基石。该报告不仅提出了21世纪毒性测试应当从活体生物检测向高通量的离体检测转变,更期望采用离体生物检测去揭示化合物毒性作用机制,从而使在这个框架下所进行的风险科学具有充分的科学依据。毒性作用机制的研究是以毒性途径紊乱(perturbationsoftoxicitypathways)为观察指标[4],这一特点与传统离体或活体生物检测中,以死亡、突变、肿瘤形成等细胞或动物终点事件(apicalendpoints)为观察指标所不同。而所谓的毒性通路在NRC的报告中被定义为:正常细胞受外来化合物干扰后所产生的,能导致损害健康效应的细胞内应答通路[4]。为了对这一观察指标进行全面的衡量,新的高通量生物检测方法仍然有待进一步的发展。

高内涵筛选(HighContentScreening,HCS)是新型的高通量化合物毒性检测方法,能够在保持细胞结构和功能完整的基础上,运用多种荧光标记物标记细胞,自动化地对细胞内多靶点的复杂表型(phenotype)进行筛选[5-7]。不同筛选条件下产生的表型特征既包括了完整细胞所表现的凋亡、坏死、增殖、迁移等形式,还包括了细胞内的细胞器损伤、信号转导、代谢途径以及遗传损伤等[8]。不同于传统离体生物检测中以细胞内单靶点的作用为检测端点,HCS以高内涵(highcontent)的方式呈现化合物暴露下所产生的多维表型信息[9],从而系统的对化合物的毒性作用机制展开研究[10],更好的对化学污染物进行风险评估。

当前随着HCS设备及分析技术的长足的进步,HCS技术已在毒理学、药理学和医学领域有了极大的发展,在生态毒理学领域,HCS的应用亦在积极的展开。本文系统介绍了HCS技术原理,在此基础上总结了HCS在当前生态毒理学领域的应用,并对其发展前景和所面临的挑战进行了展望。

1.1HCS概念

光学显微镜设备在自动化程度和图像收集速率的提高促进了HCS的发展,研究人员已可以利用图像分析方法在单细胞水平展开研究。因为HCS以完整细胞为研究对象,细胞结构和功能完整,真实反应了细胞内的毒性作用机制[11]。细胞荧光图像是HCS获取数据的主要手段,特异性荧光探针或荧光蛋白的采用使细胞内不同结构被多种荧光信号同时标记,从而反应细胞表型。能够被HCS检测得到的表型变化除包括标记点的荧光强度改变外,还有细胞或细胞内结构形态变化。图像分析技术使得表型变化的定量分析成为可能,每个细胞的荧光和形态学特征得以被聚类和分类等数据挖掘手段所整合分析,从而转换为可解释的多维细胞表型信息,这种多生物学信息呈现方式拓宽了我们对化合物毒性作用机制的理解和认识。

1.2HCS实验流程

1.3样品制备和暴露

常规的HCS过程同样依赖于实验员的操作,需要进行细胞培养、化合物暴露和细胞染色等一系列样品前处理过程,这在大规模高通量化合物的HCS中会造成了2方面的影响,一方面384、1536等多孔板的应用增加了实验员的操作难度;另一方面,实验员在操作的过程中容易引入人为误差,整个实验的质量控制难以保证[13]。因此在大规模高通量的HCS中,样品制备和暴露更依赖于自动化的液体处理设备,尽管当前自动化液体处理设备价格较高,但其引入使得实验的整体精度、重复性和可靠性被极大的增强,并满足了大部分液体处理的需要。目前,已有多个生物公司,如Tecan,PerkinElmer等都开发了自己的液体处理设备。

1.4图像获取

表1高内涵筛选平台

1.5图像分析与数据挖掘

1.6生物数据库系统

Keefer等估计,一个HCS平台每年数据产出量在500GB~6TB左右[10]。如此高的数据产出,不仅要求在数据分析过程中采用并行甚至集群计算,数据的储存和调用也依赖于服务器。但是,几乎每个HCS设备提供商都以各自格式储存数据,这导致显微实验中图像格式冗余,制约了HCS数据库的管理和维护[12]。OME以增强HCS分析软件之间的互通性为目的而开发的“Bio-format”已得到各个软硬件的广泛支持,使HCS中统一的数据管理成为可能[24]。HCS的数据库系统除了有传统的商业数据库Oracle[25],MDCStoreTM和ColumbusTM等,HCS开源数据库SIDB[26]和OME的OMERO[27]也有了广泛的应用。

表2HCS主要的应用领域和研究对象[28]

2.1遗传毒性

遗传毒性用于描述某化合物能够直接或间接的方式引起DNA或染色体损伤的性质,具有这种性质的化合物被称为遗传毒物[29]。工业污染使众多潜在的遗传毒物进入环境介质,而遗传毒物对生物胚胎细胞和体细胞的损害可能引起多种疾病,包括了新生儿畸形和癌症生成等[30]。因此为了对这些化合物进行监管,需要对其遗传毒性定量测定,而相比于传统遗传毒性评价方法,HCS在具有较高的灵敏度和特异性同时,能够高通量的检测多个遗传毒性指标,因此应用广泛。

2.1.1细胞周期阻滞

2.1.2特定DNA损伤检测

DNA损伤具有多种类别,包括了氧化性DNA损伤、DNA加合物、DNA甲基化、双链DNA损伤等[29],其中8-OHdG[36]、DNA甲基化结合蛋白[37]和磷酸化组蛋白H2AX(γH2AX)[38]分别是氧化性DNA损伤、DNA甲基化和双链DNA损伤特异性标志物。采用免疫荧光方法,能标记特定的DNA损伤标志物,并通过HCS高通量来对化合物DNA损伤类型进行判定。Barber[39]和Kim等[40]以抗体标记γH2AX,并采用HCS来对生成的γH2AXfoci进行定量分析,通过该方法可以对遗传毒物的作用机制有一定了解。

2.1.3微核试验

微核实验是在细胞核水平对遗传毒性进行评价,微核的生成存在2种机制,一种是由遗传毒物干扰细胞分裂器所引起的[41],这使得生成的绝大部分微核中含有着丝点或着丝粒,这类遗传毒物被称为非整倍体断裂剂,能间接的造成遗传毒性。另一种微核生成是由高水平的DNA损伤引起的[32],这种机制与CyclinB1浓度含量有关[42]。微核生成前,细胞核内已发生严重的基因突变和染色体损伤断裂,然而过低的CyclinB1浓度使得纺锤体组装检验点(spindleassemblycheckpoint,SAC)并不会被激活,因此DNA严重损伤的细胞被迅速退出M期,导致部分脱核的染色体形成微核[42-45]。基于这一机制生成微核的遗传毒物被称为染色体断裂剂[41],其能直接的对DNA造成高水平的损伤。这2种微核生成的机制是细胞微核实验的基础。

2.2器官毒性评价

2.3神经毒性评价

2.4化合物作用机制

当前,HCS在对海量化合物作用机制(modeofaction,MoA)的研究已经极大的促进了药物筛选的发展[5],尽管药物筛查和生态毒理学这2个领域中对化合物的毒性测试的出发点和目的性都不尽相同,但是药筛过程中利用HCS展开海量化合物的MoA研究方法对生态毒理学中HCS的应用提供了有益的参考。药物筛查的目的是在药物研发的初期,在大型化合物文库(chemicallibrary)中寻找针对特定药物作用靶点(target)具有生物活性的化合物。而对于同一靶点有效的化合物也可能会发生脱靶效应(off-targeteffect),即化合物会同时对特定靶点以外的体内生物大分子结合,这可能导致该化合物在药物开发后期被发现具有严重的副作用而造成巨大经济损失[60-62]。正因如此在药物筛查的过程中应尽早发现化合物的脱靶效应,所以需要在这一过程中对化合物的MoA展开研究[63]。尽管生物组学技术的发展,如基因芯片、转录组测序等已能够有效的寻找化合物的MoA,但是高昂的成本使其难以在大规模的药物筛查中展开,而利用HCS对产生的细胞多维表型进行挖掘,能够了解化合物的MoA,寻找到目标化合物[33]。

2.5RNA干扰和cDNA过表达

RNA干扰[70]和cDNA过表达[71]技术的应用使我们得以以“lossoffuction”和“gainoffunction”的遗传学手段来研究化合物的MoA,在药理学领域提出了化学遗传学(chemicalgenetic)的概念[72],其目的是对化合物库中的小分子化合物进行筛查来研究这些化合物对生物大分子和信号转导通路的影响,也是为了发现新的药物作用靶点。HCS能够同时对基因表达变化和化合物处理所引起的细胞表型的微小改变做出响应,化学遗传学中通常采用RNA干扰文库和化合物文库并行HCS(parallelHCS)[66,73],来探索两者细胞表型之间的关系。两种文库中筛选产生的细胞表型首先被聚类,在同一个聚类类别中,筛选出的化合物可能和这个类别下所沉默的基因导致相同的表型,因此可以认为这些化合物能够干扰该沉默基因原本的表达,从而找到潜在的药物靶标和生物标记物。

在生态毒理学领域,更多的应用是通过RNA干扰和cDNA过表达技术来构建基因低表达和过表达系统,HCS也能灵敏的检测到构建前后的表型差异。例如,尽管HepG2细胞被广泛的应用于肝毒性检测,但是多种CYPs在这种细胞模型中表达量较低[74],不利于模拟体内肝脏的代谢功能,Tolosa等[75]利用cDNA过表达技术在HepG2细胞中过表达多个CYPs,该细胞模型与原代肝细胞中CYPs表达量相类似,因此显著提高了HCS对肝毒性检测的灵敏度。

当前HCS已发展到一个新的阶段,性能日益强大的设备拓展了HCS在生态毒理学的应用,但HCS并不仅仅依赖于设备本身,更需要利用海量数据去回答亟待解决的生物学问题,因此数据库系统和数据挖掘已成为了HCS应用所要着力加强的地方。

在面对从活体向离体毒性实验转换的过程中出现的新问题,一些新的生物学技术也应当在HCS中得到进一步的应用。例如三维细胞培养技术,因为尽管单层细胞培养具有众多优点,但是单层细胞不能很好的模拟细胞在体内真实的生理状态,缺乏细胞间通讯机制,培养周期短且只适合单种细胞类型细胞培养[76]。在药物毒理学领域,已有多项证据表明了这种差异性对特定器官毒性评价时会产生不利影响[77]。例如曲伐沙星(trovafloxacin)在临床使用过程中首先被发现有很强的肝毒性[78],而在对人源肝细胞(hepatocyte)药物筛查期间并没有明显的毒性作用[79],最近的研究表明,可能是体内肝脏细胞与单层细胞培养模型间的差异造成的[80]。而三维细胞培养模型[81]能够部分弥补单层细胞培养模型的不足,模拟更真实的体内细胞生长环境。得益于HCS设备性能的提高,利用HCS基于三维培养细胞对化合物进行毒性评价也展开了探索性的研究[82]。

【摘要】大量存在于环境中的有毒污染物仍然缺乏足够的毒理学数据来对其进行有效的监管,为了满足海量化合物毒性评价的需要,基于离体生物测试的高通量毒性筛选方法在近些年得到了迅猛的发展。高内涵筛选技术是新型的高通量化合物毒性筛选方法,该方法最显著的特点是能够在保持细胞结构和功能完整的基础上同时获取多种毒性指标。因此在简介高内涵筛选技术原理的基础上,综述了其在生态毒理学领域已有的应用,并针对性地对高内涵筛选技术的发展和挑战进行了展望。

【期刊名称】生态毒理学报,2015(010)002

【关键词】高内涵筛选;高通量筛选;离体毒性测试;生态毒理学

THE END
1.数据挖掘的主要技术和应用在下面的部分中,我们将详细介绍数据挖掘的核心概念、算法原理、应用实例等。 2. 核心概念与联系 在数据挖掘中,有一些核心概念需要了解: 数据:数据是数据挖掘过程中的基本单位,可以是数字、文本、图像等形式。 特征:特征是数据中用于描述对象的属性,例如年龄、性别、收入等。 https://blog.csdn.net/universsky2015/article/details/137300243
2.数据挖掘应用(精选十篇)1 数据挖掘的定义 数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其它模型化处理,从中提取辅助商https://www.360wenmi.com/f/cnkeymoknlxl.html
3.大数据时代下数据挖掘技术的应用腾讯云开发者社区大数据时代下数据挖掘技术的应用 原文链接:https://mp.weixin.qq.com/s/bxSEO4gKQ-BbDWT1BNnwyw 随着社会信息化的迅速发展,无论是数据的变化速率,还是数据的新增种类都在不断更新,数据研究变得越来越复杂,这意味着“大数据时代”到来。2011年,互联网数据中心(internet data center,IDC)将大数据重新定义为:在https://cloud.tencent.com/developer/article/1454508
4.数据挖掘在生产物流过程中的应用论文摘要:近几年,信息化物流网络体系的应用促使数据规模得到不断扩大,产生了巨大的数据流。在企业的物流过程当中,涉及到的数据较多,容易造成数据混乱的现象,所以如何进行高效的数据挖掘,是企业面临的重要问题。本文着重分析了数据挖掘在生产物流过程中的应用,并对应用过程中注意的问题进行分析。 https://biyelunwen.yjbys.com/fanwen/jiaotongwuliu/714954.html
5.数据发掘数据挖掘大数据发展流程与应用.ppt10数据发掘数据挖掘大数据发展流程与应用5/8/2024数据挖掘技术流程从数据本身来考虑,通常数据挖掘需要有数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示等8个步骤。 信息收集数据集成数据规约数据清理数据变换数据挖掘过程模式评估知识表示数据预处理这是一个反复循环的过程,每一个步骤如果没有达到预期目标,都https://m.renrendoc.com/paper/327213498.html
6.SAS数据挖掘实战篇一刘小子但是,作为一个数据挖掘应用来说,数据挖掘仅仅是整个过程中的一个环节。数据挖掘项目的成功需要花费相当的心血,依照规范的流程进行操作。一般来说,数据挖掘需要经历以下过程:确定挖掘对象、收集数据、数据预处理、数据挖掘和信息解释。在整个数据挖掘过程中,信息可视化技术扮演着很重要的角色。下面详细介绍各个数据挖掘的https://www.cnblogs.com/amengduo/p/9587575.html
7.数据挖掘过程中多维数据可视化技术研究与应用其中在可视化过程中对于在数据可视化维度控制显示方面往往缺乏良好的指导,需要用户根据经验逐步试探性的对维度的排列顺序以及用于可视化显示的维数进行控制,这样一些重要规律可能被忽略。本文利用维相似度算法对数据维的排列顺序进行规划;采用属性相关分析算法对参与显示的维数进行控制。通过实验验证上述算法提高了可视化的显示https://wap.cnki.net/touch/web/Dissertation/Article/-2007123314.html
8.化工生产过程数据挖掘系统的研究与应用计算机与应用化学 北大核心CSTPCD ISSN:1001-4160 年,卷(期):2008,25(7) MPLS VPN在多分支企业组网中的研究与应用 周建鹏;中国新通信; 数据挖掘在装备储存和使用过程中的应用研究 马可欣等;火力与指挥控制; 数据挖掘技术在钢铁领域应用研究 张云等;通讯世界; https://d.wanfangdata.com.cn/Periodical/jsjyyyhx200807001
9.数据挖掘技术应用实例第7章 数据挖掘在产品设计中的应用 7.1.产品设计的概念 7.2 产品概念设计的体系结构 7.2.1 产品概念设计的内涵 7.2.2 产品概念设计的特点 7.2.3 产品概念设计的理论及发展 7.2.4 产品概念设计的体系结构 7.3 面向产品设计的数据挖掘模型 7.3.1 数据挖掘过程 7.3.2 需求分析数据挖掘过程的实现 7.https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8%E5%AE%9E%E4%BE%8B/4799787
10.数据挖掘论文它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全https://www.unjs.com/lunwen/f/20220924130749_5650839.html
11.数据挖掘论文(优选10篇)1数据挖掘技术概述 数据挖掘技术就是指在超多随机数据中提取隐含信息,并且将其整合后应用 在知识处理体系 的技术过程。若是从技术层面判定数据挖掘技术,则需要将其划 分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化 的分析模型和处理机制,从根本上优化商业决策。借助数据挖掘技术能建构完整 http://www.360doc.com/content/23/1127/11/82785916_1105448548.shtml
12.数据挖掘应用领域有哪些mob649e81563816的技术博客数据挖掘应用领域有哪些 数据挖掘是一种从大量数据中提取有价值信息的过程,它在各个行业和领域都有着广泛的应用。本文将介绍数据挖掘在不同领域的应用,并通过代码示例来展示其中的一些常见技术和方法。 1. 金融领域 在金融领域,数据挖掘可以应用于风险评估、信用评分、投资组合管理等方面。下面是一个简单的示例,使用Pyhttps://blog.51cto.com/u_16175441/7195496
13.过程挖掘:数据科学实战MOOC中国过程挖掘在传统的基于模型的过程分析(如模拟和其他业务流程管理技术)和以数据为中心的分析技术(如机器学习和数据挖掘)之间搭建了一座重要桥梁。过程挖掘寻求事件数据(如观察行为)和过程模型(手制或自动发现)之间的交汇。该技术最近才得以应用,但是却适用于各种类型的操作过程(组织和系统)。应用实例包括:分析医院的治疗https://www.mooc.cn/course/1271.html
14.数据分析与挖掘11篇(全文)Web数据挖掘过程是一个完整的知识发现的过程,但与传统数据和数据仓库相比,Web上的信息是非结构化或半结构化的、动态的,并且是容易造成混淆的,所以很难直接以Web网页上的数据进行数据挖掘,而必须经过必要的数据处理。因此可以将Web数据挖掘分为确定业务对象、数据准备、数据挖掘、结果分析等四个步骤。 https://www.99xueshu.com/w/ikeyp687ycyz.html
15.什么是数据挖掘?——数据挖掘的过程,方法和实例d. 社交网络分析:通过挖掘社交网络中的关系和影响网络,发现社交网络中的意见领袖和影响力人物等。 总结: 数据挖掘是一项重要的技术,通过挖掘数据中的规律和趋势,可以帮助企业和组织做出更加准确的决策和预测。本文介绍了数据挖掘的基本过程、常用方法和一些应用实例,希望对读者了解和应用数据挖掘技术有所帮助。https://www.jiandaoyun.com/fe/sjwjsjwjdg/