基于数据挖掘技术的现代物流管理正保会计网校

【内容摘要】随着信息时代数据量的剧增,深化物流管理的最有效方法是在其中引入数据挖掘技术。本文在系统分析数据挖掘过程及关键技术的基础上,以沃尔玛公司物流管理系统为例,论述了数据挖掘技术在物流管理应用中的优势,指出其必将为企业物流管理决策提供越来越强大的支持功能。

【关键词】数据挖掘物流管理信息系统

现代物流系统是一个庞大复杂的系统,特别是全程物流,包括运输、仓储、配送、搬运、包装和物流再加工等诸多环节,每个环节信息流量十分巨大。现代信息化物流网络体系的应用使原来数据库的规模不断扩大,产生了巨大的数据流,使企业很难对这些数据进行准确、高效的收集和及时处理,因此也就很难帮助决策者做出快速、准确地决策,实现对物流过程的控制,降低整个过程的物流成本。随着知识经济和现代信息技术的迅猛发展,信息技术特别是网络技术的发展,为物流发展提供了强有力的支撑。物流管理信息系统是企业信息系统和企业信息化的基础,能够利用信息技术对物流中的各种信息进行实时、集中、统一管理。

数据挖掘(DataMining)能够挖掘蕴藏在海量数据中大量未知的和有价值的信息,为企业物流管理提供各种决策信息,减轻物流管理者从事低层次信息处理和分析的负担,使他们专注于最需要决策智慧和经验的工作,因此提高了管理和决策的水平。随着信息技术的不断发展,数据挖掘技术将为企业物流管理决策提供越来越强大的支持功能。

数据挖掘过程及关键技术分析

数据挖掘过程数据挖掘技术就是采用机器学习、统计、数学和可视化技术,从大量的数据库中识别出有效的、新颖的、潜在的、有用的以及最终挖掘出可理解模式的高级处理过程。有时人们也称它为数据库中的知识发现(KDD)。它利用数据库技术对数据进行前端处理,而利用人工智能的方法从处理后的数据中提取有用的知识。其挖掘过程可分为四个步骤:数据准备、数据挖掘、结果的解释和评价、用户界面。

数据准备:包括3个子步骤,数据集成、数据选择、数据预处理。在这个阶段中,需要搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据;研究数据的质量,为进一步分析做准备,并确定将要进行的挖掘操作的类型;将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的,建立一个真正适合挖掘算法的分析模型是数据挖掘成功的关键。数据准备需要占用整个数据挖掘过程的60%工作量,这也说明了数据挖掘对数据的严格要求。

数据挖掘:对所得到的经过转换的数据进行挖掘,除了进一步完善挖掘算法外,其余一切工作都能自动完成。数据挖掘一般有两种方式,发现型的数据挖掘和验证型的数据挖掘。前者是让数据挖掘系统为用户产生假设,后者是用户自己对于数据库中可能包含的知识提出假设。

解释和评价:解释并评估结果,其使用的分析方法一般应视不同的数据挖掘操作而定。根据最终用户的决策目的对提取的信息进行分析,把最有价值的信息区分出来,并且通过决策支持工具提交给决策者,因此这一步骤任务不仅是把结果表达出来,还要对信息进行过滤处理,如果不能令决策者满意,需要重复以上数据挖掘过程。

用户界面:通常会用到可视化技术。选择合适的可视化工具,通过使用者证实发现的知识的可靠性。如果不能令使用者满意,需要重复以上数据挖掘过程。否则可以将分析所得到的知识集成到业务信息系统的组织结构中去。

关键技术分析基于数据挖掘的物流管理信息系统的关键技术主要包括数据仓库、数据挖掘、数据分析工具等。

数据仓库技术。数据仓库是来自多个源的数据的存储库,它可通过Internet将不同的数据库连接起来,并将数据全部或部分复制到一个数据存储中心。数据仓库倾向于一个逻辑的概念,它建立在一定数量的数据库之上,这些数据库在物理上是可以分开的。数据仓库通过Internet打破地域界限,将它们合成一个逻辑整体,把一个海量的数据库展现在用户面前。数据仓库管理系统的一项重要工作是实现对传统数据库进行提取、清理和转载到数据仓库中。

数据挖掘技术。这是整个系统的难点和重点,主要涉及模式模型和挖掘算法。目前,己形成了多种数据挖掘方法,如分类知识发现、数据总结、数据聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常发现、趋势预测等。各种方法均有它一定的优点,也有它的不足。几种技术并不是单一的使用,而是根据实际情况综合的加以应用。现在一些流行的数据挖掘工具一般都包括了几种方法。如IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统都是多模式的挖掘工具。

数据分析工具。数据仓库虽然存有大量数据,但提供辅助决策的信息需要利用各种分析工具,如联机分析处理(OLAP)工具、统计分析和查询优化工具等。这些工具的性能对管理决策的效果有着重要的影响。目前已出现具有智能功能的强大的数据分析工具,这些分析工具不仅能在系统运行时采集和处理数据,同时也支持对其他业务系统的数据进行采集。

数据挖掘技术在物流管理中的应用

利用数据仓库和数据挖掘技术,沃尔玛对商品进行市场分组分析,即分析哪些商品顾客最有希望一起购买。沃尔玛数据仓库里集中了各个商店一年多的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用自动数据挖掘工具对这些数据进行分析和挖掘。沃尔玛公司近年来用大容量的数据仓库来进行数据挖掘和客户关系管理,对其3000多家零售店的8万种产品时刻把握住利润最高的商品品种和数量。他们在从事由数据变信息,由信息变知识的知识挖掘工作,通过全球全集团、全方位、全过程、全天候的自动数据采集技术,改变传统的依靠假设和推断来确定订货的方式,从数据的不断积累过程中以小时为单位动态地运行决策模型,导出数亿个品种的最佳订货量与最佳商品组合分配,降价以及商品陈列等。

数据挖掘技术在银行、生物工程、市场营销等领域有许多成功的应用案例。数据挖掘将是未来对企业产生深远影响的关键技术,并且还将成为未来投资的焦点。随着集成化物流管理信息系统的建立,以及网络技术、EDI、人工智能、条形码与POS等各种先进技术的应用,物流信息的商品化、物流信息收集的数据库化和代码、物流信息处理的电子化和计算机化,把挖掘到的规则与物流管理各方面有机地结合,就能极大地提高企业的竞争力。

随着信息时代的数据量的剧增,深化物流信息管理最有效的方法是在其中引进数据挖掘技术,数据挖掘可以从数据中发现趋势和模式,人们通过数据挖掘得到的回报就是将这些新发现的知识转变为经营上的成果,如增加顾客购买欲望,减少信用卡欺诈的数量等。充分合理的利用数据挖掘技术,可以进行市场预测和分析,这必将为正确的决策奠定坚实的基础。迈向21世纪的物流管理技术,不仅是企业战略的“商务物流”,而且是向整个社会实现物资供给的“社会物流”,进而在全球化市场的激烈竞争中形成多元化网络所必需的“全球物流”。

参考文献:

1.蔡少华。网络空间物流信息系统的分析与探讨[J].地球信息科学,2002(3)

2.董泉源。基于Web的物流管理系统LH的设计与实现[J].计算机应用研究,2002(8)

THE END
1.数据挖掘的主要技术和应用在下面的部分中,我们将详细介绍数据挖掘的核心概念、算法原理、应用实例等。 2. 核心概念与联系 在数据挖掘中,有一些核心概念需要了解: 数据:数据是数据挖掘过程中的基本单位,可以是数字、文本、图像等形式。 特征:特征是数据中用于描述对象的属性,例如年龄、性别、收入等。 https://blog.csdn.net/universsky2015/article/details/137300243
2.数据挖掘应用(精选十篇)1 数据挖掘的定义 数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其它模型化处理,从中提取辅助商https://www.360wenmi.com/f/cnkeymoknlxl.html
3.大数据时代下数据挖掘技术的应用腾讯云开发者社区大数据时代下数据挖掘技术的应用 原文链接:https://mp.weixin.qq.com/s/bxSEO4gKQ-BbDWT1BNnwyw 随着社会信息化的迅速发展,无论是数据的变化速率,还是数据的新增种类都在不断更新,数据研究变得越来越复杂,这意味着“大数据时代”到来。2011年,互联网数据中心(internet data center,IDC)将大数据重新定义为:在https://cloud.tencent.com/developer/article/1454508
4.数据挖掘在生产物流过程中的应用论文摘要:近几年,信息化物流网络体系的应用促使数据规模得到不断扩大,产生了巨大的数据流。在企业的物流过程当中,涉及到的数据较多,容易造成数据混乱的现象,所以如何进行高效的数据挖掘,是企业面临的重要问题。本文着重分析了数据挖掘在生产物流过程中的应用,并对应用过程中注意的问题进行分析。 https://biyelunwen.yjbys.com/fanwen/jiaotongwuliu/714954.html
5.数据发掘数据挖掘大数据发展流程与应用.ppt10数据发掘数据挖掘大数据发展流程与应用5/8/2024数据挖掘技术流程从数据本身来考虑,通常数据挖掘需要有数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示等8个步骤。 信息收集数据集成数据规约数据清理数据变换数据挖掘过程模式评估知识表示数据预处理这是一个反复循环的过程,每一个步骤如果没有达到预期目标,都https://m.renrendoc.com/paper/327213498.html
6.SAS数据挖掘实战篇一刘小子但是,作为一个数据挖掘应用来说,数据挖掘仅仅是整个过程中的一个环节。数据挖掘项目的成功需要花费相当的心血,依照规范的流程进行操作。一般来说,数据挖掘需要经历以下过程:确定挖掘对象、收集数据、数据预处理、数据挖掘和信息解释。在整个数据挖掘过程中,信息可视化技术扮演着很重要的角色。下面详细介绍各个数据挖掘的https://www.cnblogs.com/amengduo/p/9587575.html
7.数据挖掘过程中多维数据可视化技术研究与应用其中在可视化过程中对于在数据可视化维度控制显示方面往往缺乏良好的指导,需要用户根据经验逐步试探性的对维度的排列顺序以及用于可视化显示的维数进行控制,这样一些重要规律可能被忽略。本文利用维相似度算法对数据维的排列顺序进行规划;采用属性相关分析算法对参与显示的维数进行控制。通过实验验证上述算法提高了可视化的显示https://wap.cnki.net/touch/web/Dissertation/Article/-2007123314.html
8.化工生产过程数据挖掘系统的研究与应用计算机与应用化学 北大核心CSTPCD ISSN:1001-4160 年,卷(期):2008,25(7) MPLS VPN在多分支企业组网中的研究与应用 周建鹏;中国新通信; 数据挖掘在装备储存和使用过程中的应用研究 马可欣等;火力与指挥控制; 数据挖掘技术在钢铁领域应用研究 张云等;通讯世界; https://d.wanfangdata.com.cn/Periodical/jsjyyyhx200807001
9.数据挖掘技术应用实例第7章 数据挖掘在产品设计中的应用 7.1.产品设计的概念 7.2 产品概念设计的体系结构 7.2.1 产品概念设计的内涵 7.2.2 产品概念设计的特点 7.2.3 产品概念设计的理论及发展 7.2.4 产品概念设计的体系结构 7.3 面向产品设计的数据挖掘模型 7.3.1 数据挖掘过程 7.3.2 需求分析数据挖掘过程的实现 7.https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8%E5%AE%9E%E4%BE%8B/4799787
10.数据挖掘论文它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全https://www.unjs.com/lunwen/f/20220924130749_5650839.html
11.数据挖掘论文(优选10篇)1数据挖掘技术概述 数据挖掘技术就是指在超多随机数据中提取隐含信息,并且将其整合后应用 在知识处理体系 的技术过程。若是从技术层面判定数据挖掘技术,则需要将其划 分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化 的分析模型和处理机制,从根本上优化商业决策。借助数据挖掘技术能建构完整 http://www.360doc.com/content/23/1127/11/82785916_1105448548.shtml
12.数据挖掘应用领域有哪些mob649e81563816的技术博客数据挖掘应用领域有哪些 数据挖掘是一种从大量数据中提取有价值信息的过程,它在各个行业和领域都有着广泛的应用。本文将介绍数据挖掘在不同领域的应用,并通过代码示例来展示其中的一些常见技术和方法。 1. 金融领域 在金融领域,数据挖掘可以应用于风险评估、信用评分、投资组合管理等方面。下面是一个简单的示例,使用Pyhttps://blog.51cto.com/u_16175441/7195496
13.过程挖掘:数据科学实战MOOC中国过程挖掘在传统的基于模型的过程分析(如模拟和其他业务流程管理技术)和以数据为中心的分析技术(如机器学习和数据挖掘)之间搭建了一座重要桥梁。过程挖掘寻求事件数据(如观察行为)和过程模型(手制或自动发现)之间的交汇。该技术最近才得以应用,但是却适用于各种类型的操作过程(组织和系统)。应用实例包括:分析医院的治疗https://www.mooc.cn/course/1271.html
14.数据分析与挖掘11篇(全文)Web数据挖掘过程是一个完整的知识发现的过程,但与传统数据和数据仓库相比,Web上的信息是非结构化或半结构化的、动态的,并且是容易造成混淆的,所以很难直接以Web网页上的数据进行数据挖掘,而必须经过必要的数据处理。因此可以将Web数据挖掘分为确定业务对象、数据准备、数据挖掘、结果分析等四个步骤。 https://www.99xueshu.com/w/ikeyp687ycyz.html
15.什么是数据挖掘?——数据挖掘的过程,方法和实例d. 社交网络分析:通过挖掘社交网络中的关系和影响网络,发现社交网络中的意见领袖和影响力人物等。 总结: 数据挖掘是一项重要的技术,通过挖掘数据中的规律和趋势,可以帮助企业和组织做出更加准确的决策和预测。本文介绍了数据挖掘的基本过程、常用方法和一些应用实例,希望对读者了解和应用数据挖掘技术有所帮助。https://www.jiandaoyun.com/fe/sjwjsjwjdg/