人工智能视域下机器学习的教育应用与创新探索芥末堆

摘要:机器学习发展现状、潜力和面临挑战的梳理。

智能革命浪潮正席卷全球。2017年开年,神秘棋手Master连胜中日韩多名世界级顶尖棋手的跨年围棋大战落下帷幕,随即Master被证实正是2016年3月战胜李世石的AlphaGo。这是人工智能(Artifi-cialIntelligence,AI)史上绝对的“历史事件”。AI也正冲击着人们的日常生活。Google提出的自动驾驶汽车(AutonomousVehicles)已经从教科书照进了现实,依靠车内的智能驾驶仪便可实现无人驾驶。机器人的脚步也从探索火星拓展到人体内,一种可吞服的微型折叠机器人进入人体,可以帮助修复伤口或挪走被误食的纽扣电池

教育领域在人工智能研究浪潮的影响和渗透下,也正发生改变。一方面,人工智能和学习科学相结合形成新领域——教育人工智能(EducationalAr-tificialIntelligence,EAI),其核心目标是“通过计算获得精准和明确的教育、心理和社会知识形式,这些知识往往是隐式的”。知识以学习者模型、领域知识模型和教学模型等形式呈现,算法是获得这些知识的核心技术。目前,已有大量教育人工智能系统被应用于学校,这些系统整合了教育人工智能和教育数据挖掘(EducationalDataMining,EDM)技术(如,机器学习算法)来跟踪学生行为数据,预测其学习表现以支持个性化学习。

另一方面,以智慧教育引领教育信息化的创新发展,从而带动教育教学的创新发展,已成为信息时代的必然趋势。个性化学习作为智慧教育的核心要素,如何通过技术更好地支持和促进个性化学习的开展,已经成为智慧教育研究领域的诉求。目前,个性化学习的实践应用主要集中于自定步调学习、个别化指导和学习内容自适应等方面,但在整个学习过程中尚未实现差异化的学习服务,主要原因在于技术的发展尚不能充分满足个性化学习的需求。

(一)机器学习的定义

(二)机器学习的两大阶段

机器学习的发展可以分为两个阶段:浅层学习(ShallowLearning)和深度学习(DeepLearing)。

1、浅层学习

20世纪80年代末期,用于人工神经网络的反向传播算法(也称为BackPropagation算法或者BP算法)[12]的出现,拉开了浅层学习的帷幕。利用BP算法可以让人工神经网络模型从大量样本中学习出规律,并进行预测。但是,浅层学习模型依靠人工经验来抽取样本的特征,往往要求开发人员挖掘出好的特征。

2、深度学习

(三)机器学习的发展现状

技术中介的智慧教育已经成为教育信息化的新境界、新诉求[18],通过构建技术融合的学习环境,让教师能够施展高效的教学法,让学习者能够获得适宜的个性化学习服务和美好的发展体验,是智慧教育的核心目标[19]。在智慧教育环境中,学习者的数据被收集形成教育大数据,迫切需要智能化手段挖掘这些数据,以发现潜在模式和知识来支持智慧教育的创新发展。机器学习的本质是使用计算机从大量数据中学习规律,自动发现模式并用于预测。因此,机器学习助力智慧教育深度理解学习者的学习是确定无疑的。

(一)作用对象和环境

机器学习方法的作用对象是教育数据,包括学习者与教育系统交互产生的所有数据,以及人口统计、情感、协作和管理数据等,这些数据源来自不同的教育环境。Romero和Ventura认为,教育环境可以分为传统教育环境和基于计算机的教育环境[20];Papamitsiou和Economides认为,教育环境包括虚拟学习环境(VirtualLearningEnvironment,VLE)和学习管理系统(LearningManagementSystem,LMS)、MOOCs和社会性学习、基于网络的教育、认知导师系统、基于计算机的教育、多模态和移动环境[21]。

我们认为,智慧教育环境可以分为传统教育环境和网络教育环境,如图1所示。

传统教育环境一般基于学校或课堂。根据数据存储的不同,可分为封闭式教学环境和开放式教学环境。其中,封闭式教学环境指单机版、在本地部署的教学平台或桌面版应用,数据存储于内存;开放式教学环境指基于网络的远程教育平台(受控环境,用来收集学习者和活动数据),数据存储于网络空间。

网络教育环境分为开放式教学环境和非正式社会性教育环境,其中,非正式社会性教育环境是指基于智能终端(如,PC、移动终端等)和以自主学习为主的学习环境,数据存储于网络空间。从数据的角度看,封闭式教学环境是教育小数据环境,开放式教学环境和网络教育环境是教育大数据环境。

(二)作用过程

机器学习一般作用于教育数据挖掘过程。教育数据挖掘涉及开发、研究和应用计算机方法在收集的大量教育数据中检测模式,是教育与数据挖掘的融合。数据挖掘技术最早于1995年应用于教育领域,拉开了教育数据挖掘研究的帷幕,此后逐渐发展成为独立的研究领域。教育数据挖掘涉及的学科主要包括教育学、计算机科学和统计学[22],如图2所示。其中,机器学习作为计算机科学和统计学的融合,为教育数据挖掘提供了强有力的技术支持。

在教育数据挖掘过程中,机器学习主要作用于数据挖掘和解释部分,实现传统教育中缺少或人工难以完成的功能,通过对数据进行自动化分析来发现未知的新知识和模式,如图3所示。

其中,在数据解释部分,机器学习方法通过建立预测模型(PredictiveModel)和描述模型(DescriptiveModel)分析教育数据来发现模式和知识。预测模型通过已知的数据预测未知的数据,例如,通过分析学生的成绩来预测学习表现;描述模型通过分析数据发现新的模式或结构。

知识是机器学习的发现,主要分为原理类、实践类和优化类知识[23]。其中,原理类知识旨在验证或修正现有的教育理论,例如,发现新的学习规律;实践类知识旨在帮助教师开展教学实践,例如,预测学生表现和成绩;优化类知识旨在改进学习系统的效果和性能,例如,通过分析学习者知识提高系统的自适应能力。这些知识将最终反馈给教育系统进行迭代循环,以促进和改善学习。

(三)作用方法

1、预测(Prediction)

预测旨在开发一个模型,从数据其他方面的集合(预测变量)中,推断数据的一个单一方面(被预测变量)。简言之,就是从已知事件推测未知事件的过程。在教育应用中,常用的预测方法是分类(Classi-fication)和回归(Regression),一般用来预测学生的表现和检测学生行为。

(1)分类:一般用于预测学生的学习表现,常用算法有决策树、随机森林、角色规则、逐步回归和逻辑回归等。例如,Lauria等使用逻辑回归、支持向量机和C4.5决策树等机器学习方法分析了不同数据源的学生数据集[27];Thammasiri等使用逻辑回归、决策树、神经网络和支持向量机等机器学习技术对七年的学生学习数据进行分析,来预测新生是否会在第二学期继续学习[28]。

(2)回归:一般用于分析学习行为与学习表现之间的关系,常用算法有线性回归和回归树等。例如,Kotsiantis采用回归算法分析学生在线提交作业的评分数据和学生的关键人口特征数据,来预测学生的学习表现[29];Hachey等采用二元逻辑回归算法分析学生在线课程记录及其GPA,来预测学生能否完成在线课程[30]。

2、聚类(Clustering)

聚类通常用于发现数据集中事先未知的常见分类。在教育应用中,通常用来基于学生学习和交互模式对学生分组或对相似的课程材料分组。例如,Yanto等基于使用属性变精度的近似值的精度均值,论证了使用变精度粗糙集模型对焦虑学生进行聚类的适用性[31];Aher和Lobo采用聚类算法和关联规则挖掘,对Moodle课程的学习记录进行聚类和分析,然后向学习者推荐合适的课程[32]。

综上可知,机器学习方法能够自动从大量数据中提取隐含的、未知的、却潜在有用的信息和知识,支持智慧教育教师开展智能化教学和学生进行个性化学习。因此,机器学习应用于智慧教育是适合的,也是必要的。

如前文所述,机器学习属于数据挖掘的分析技术,而数据挖掘技术最早于1995年应用于教育领域。由此推论,机器学习教育应用的研究于1995年拉开序幕。同时,通过文献梳理发现,教育数据挖掘的研究成果在2000年前仅有7篇[33],其具有代表性的文献综述主要集中于2009-2010年前后[34-36],这一阶段的教育数据挖掘研究正接近青春期[37]。因此,从2010年起至今的国外基于真实数据的机器学习以教育应用案例研究成果为主,我们通过对机器学习技术在教育数据挖掘青春期阶段的研究进展及其教育应用的潜力进行梳理,以期为教育者、教育研究者和开发人员等在智慧教育中的应用提供理论和实践指导。其中,机器学习教育应用概念图如图4所示。

(一)研究目标

我们通过对文献梳理发现,机器学习教育应用主要集中在学生建模、学生行为建模、预测学习表现、预警失学风险、学习支持和评测以及资源推荐等方面(见表2)。

1、学生建模

学生建模是创建和维护学生模型模块的过程,学生模型模块主要负责学生当前知识状态模型的开发和维护,旨在对学生的误解和次优表现做出假设,以便教师能够指出并建议修正。学生建模包括学生模型和诊断模型,学生模型存储学生知识的数据结构,诊断模型执行诊断过程并更新学生模型。其中,领域模型是学生模型的基础。例如,Yudelson等通过使用自动化方法提取领域模型来支持大学生编程语言的学习,在解决程序练习的过程中对学生知识进行建模,以支持系统推荐下一个解决问题。该研究所用的数据来自某大学三门程序入门课程的代码快照数据,处理方法主要基于两点:在每个程序提交之后,使用程序语言的内在结构来建模知识;使用一组测验自动测试程序的正确性。该研究选择Null模型和Rasch模型用于学生建模,并使用AFM模型结合PC算法对学生学习建模。研究发现,PC算法的使用能够提高AFM模型对过滤概念列表的精准度。

类似的,Baker等采用贝叶斯知识跟踪和线性回归等方法构建学生模型,对学生在特定问题步骤中已获得技能的可能性进行检测。研究基于232名中学生的数学课程数据,主要分为两步建模:使用标准贝叶斯知识跟踪结合数据和贝叶斯定理来预测学生知识,生成可能性的标签;训练模型,使用更广泛的特征集来预测标签数据。

2、学生行为建模

类似的,Huang等使用归纳推理(基于相似的学习)、演绎推理(基于解释的学习)和类比推理(案例推理)等多策略机器学习构建了黑板多策略机器学习模型,学习和发现学生学习过程中不一致行为的属性。根据这些属性,智能教学系统可以采取适当的方法防止学生不一致行为的再次发生,例如,加强教学和实践。

Wen和Rosé提出通过点击流分析确定学生的行为模式,以便为学生搜索信息和在线学习提供更有效的个性化支持。该研究分析了与课程成功高低有关的学生习惯性行为,以及情境信息对会话的影响。通过挖掘学生单个会话的习惯性行为,描述了MOOCs中的会话类型,采用局部6元模型对学习会话进行建模,以支持系统自动分配学习活动和活动序列。

3、预测学习表现

预测学习表现,一般包括预测学生的最终分数或学术表现等,主要影响因素包括人口特征、分数(平时测验和最终成绩)、学生学档、多模能力、学生参与、活动的注册和参与以及情绪情感状态等。有些研究通过分析学生数据直接预测学习结果。例如,使用机器学习回归算法,对学生少量写作任务的分数和学生的关键人口特征数据进行分析,以预测学生的成绩。研究实验分为两个阶段,其中,训练阶段使用收集的数据来训练算法;测试阶段使用收集的10组数据来检测算法的精确度。

SanPedro等将学生知识、学生情感和行为的细粒度模型,应用于3747名学生的数据分析来理解学生学习的发展和投入,以预测学生能否考上大学。该研究开发了一个逻辑回归模型,并且发现,学生投入和学生成功的特征组合作为预测指标,可以辨别出将考入大学的学生。

类似的,Hachey等使用二元逻辑斯蒂回归算法,对962名学生的先前在线课程结果和GPA进行分析,来预测学生完成在线课程的成功率。其中,先前在线课程结果和GPA作为自变量,在线课程成功率作为因变量。在二元逻辑斯蒂回归模型中,GPA作为连续变量。该研究结果发现,先前在线学习体验作为预测指标比GPA能更好地预测成功率。

4、预警失学风险

綴学率一直是教育管理领域的重要指标。机器学习方法能够对学生数据特征进行分析和归类,分析学生綴学原因,预测綴学行为。虽然教育管理部门存有大量的学生数据,但是由于缺乏适当的数据或受数据隐私性限制,预警失学的定量研究相对较少。

例如,Thammasiri等和Lauía等基于大量的真实学生数据对学生的学术成功展开了研究。其中,Thammasiri等使用机器学习技术对长达七年、特征丰富的真实学生数据进行分析,来预测新生是否会在第二个学期注册继续学习。该研究比较了不同的数据平衡技术来提高少数类的预测准确度,其中包括过抽样算法、欠抽样算法和合成少数类过抽样算法,并连同逻辑回归、决策树、人工神经网络和支持向量机等四种流行的分类方法,构建预测模型来进行比较。研究结果发现,支持向量机结合合成少数类过抽样算法数据平衡技术是表现最佳的分类器,三个数据平衡技术都能提高少数类的预测准确度。在开发的模型中应用灵敏度分析,能够为学生流失的准确预测识别出最重要的变量。这些模型的应用能够预测高危学生,开发有效的干预方法来减少学生的失学率。

人口统计和学习成绩是预测学生綴学的重要数据。例如,Aulck等采用机器学习方法跟踪32500名学生收集成绩数据和人口统计数据,使用逻辑回归正则化、k最近邻算法和随机森林等方法来预测辍学变量,并对学生数据中预测辍学的最佳要素进行了检测。研究结果发现,逻辑回归正则化相比另外两种算法能够提供最有力的预测,并检测出学生流失的个人预测指标,包括数学、英语、化学和心理学课程的GPA以及入学和出生年月等。

5、学习支持和评测

学习支持和反馈是増强在线教育系统个性化和定制化的关键。在学习者与系统交互的过程中,学习支持提供个性化学习服务提高学习表现,或者纠正学生的学习误区。前者是“先发制人”,后者是“亡羊补牢”。例如,Ahadi等将机器学习方法和大学生编程过程中的源代码快照数据相结合,让系统能够在课程入门第一周,就精准地检测出高表现和低表现的学生。该研究首先对特征进行了抽取和选择,然后选择最精确的分类器来检测预测模型。其中,选取了贝叶斯(朴素贝叶斯、贝叶斯网络)、规则学习者(决策表、连接规则和PART)和决策树(AD树、J48、随机森林和决策树)等分类器进行评估,发现决策树分类器的整体准确度最高,而在决策树中随机森林的预测准确度最高,因此,选择随机森林作为分类器来评价学生的表现。

Xing等结合学习分析和教育数据挖掘方法,基于小数据来预测学生在CSCL学习环境中的表现,从而为学生提供相应的教学干预。该研究使用活动理论来整体量化环境中的学生参与情况,并得到六个特征变量,然后使用遗传规划技术来构建预测模型。结果显示,基于遗传规划的模型是可解释的,并且与传统建模算法相比预测率得到优化。

对学习者的领域知识获取、技能发展和完成结果,以及反思、探究和情绪等的监控和评价,也是机器学习研究的重要主题。例如,Kinnebrew和Biswas使用探索性数据挖掘方法,从学生的交互轨迹中评测和比较学生的学习行为。其中,核心方法结合迭代行为抽象和逐段线性分割,迭代行为抽象是区别识别频繁活动模式的序列挖掘技术,逐段线性分割是关于评估表现或进展衡量的活动阶段。研究结果发现,高表现和低表现学生具有不同的阅读行为模式和监控行为。

6、资源推荐

资源推荐通过分析学习者学习记录来预测学习者的喜好,为学习者推荐最合适的资源(内容、活动或服务)或资源序列。其最大的特征是通过分析学习者的行为,来“猜”学习者的表现和兴趣,并生成个性化推荐,旨在帮助学习者选择感兴趣的课程、科目、学习材料和学习活动等。例如,等使用机器学习方法构建编程学习系统的推荐模型,能够自动地适应学习者的兴趣和知识水平。系统通过测试学习者学习风格和挖掘服务日志,来识别学习风格和学习者习惯的不同模式。研究首先基于不同的学习风格处理集群,然后,通过AprioriAll算法挖掘频繁序列,分析学习者的习惯和兴趣,最后,系统根据频繁序列的等级推荐个性化学习内容。

Wang和Liao设计了一个基于不同学生特征推荐个性化教学内容的英语自适应学习系统。系统的核心技术是人工神经网络(ANN),并选择ANN的BP算法用于学生特征和学习表现的监督聚类分类。该研究应用了一个四步核心方法来构建每个学生的特征与词汇、语法和阅读的学习表现的关系,方法步骤包括构建学生特征和学习表现的关系、获得所有不同特征组合的学习表现、设置α-截和不同学习表现水平的α-截,以及为不同学生特征组合设置教学

内容的不同等级。该方法支持系统根据学生的性别、性格和学习焦虑程度等特征,来适应、推荐不同层次的学习内容。

(二)典型应用:个性化自适应学习平台

目前,Knewton、DreamBox、ALEKS、Gooru等个性化自适应学习平台,结合机器学习技术已经得到了广泛应用。其中,Knewton作为目前影响力最大的自适应学习平台,能够为学习者提供自适应学习体验和预测分析,来提高学生的学习成就。在技术层面,平台使用机器学习方法作为核心技术,构建了分析引擎和推荐引擎,分析引擎结合内容数据和学生响应数据实时地对学生能力进行推断,然后,推断结果与学生学习结果结合,支持预测学生的学习表现,从而为学习者生成下一步的个性化学习路径。

随着收集的数据越来越多,基于机器学习的推荐引擎和分析引擎模型和参数会不断修改与更新,让预测更加精准。Knewton在学习过程中主要提供三种工具和三种核心服务,其中,工具包括个别化指导、预测分析和学习报告;服务包括为学生提供个性化推荐、为教师和学生提供分析、为应用和内容创建者提供内容解读。通过使用Knewton自适应学习平台,学生的通过率、退出率、提早完成率均有显著变化。

机器学习作为人工智能的核心技术作用于教育大数据,将帮助我们更好地理解数据、信息、知识与智慧之间的关系。但机器学习教育应用在技术方面尚不成熟,在教育框架下也没有规模化。因此,基于智慧教育框架,对机器学习的教育应用提出以下建议:

(一)跨界方面——支持智慧教育与机器学习的融合创新

1、机器学习与智慧教育的跨界融合

2、机器学习应用的教学场景提炼

机器学习助力智慧教育发展的潜力和价值是毋庸置疑的,但目前缺少机器学习教育应用的成熟案例,尤其是在不同教学场景中的应用,这将是机器学习应用发展的一大短板。机器学习虽然本身具有智能性,但是也具有一定局限性,尤其表现为容易被复杂的场景所迷惑,人们可能很容易完成的场景分析,对于机器来说却依旧困难。如果一直强调机器学习技术本身,而不直接面向教育应用提供整体的解决方案,随着技术壁垒越来越低,其教育应用的未来价值可能会越来越小。因此,基于智慧教育框架梳理和提炼机器学习不同教学场景应用的案例,将有助于体现机器学习的教学应用价值。

(二)技术方面——支持智慧环境的技术创新

1、教育大数据治理

教育大数据是机器学习应用研究的基础,其大量的、复杂的和凌乱的特点,给数据的采集和存储带来了难度。同时,在数据共享方面通常涉及数据隐私和伦理问题,如何保护人们隐私又最大化地合理利用数据支持科学研究,也是当前面临的挑战。因此,需要协同多方开展教育大数据治理,以提升教育数据质量、保障数据合理使用、保护数据隐私安全,以及促进数据合法共享。例如,建立健全的教育大数据治理模式,制定教育数据质量标准和管理规范,规范化采集和汇聚、共享不同平台的数据,形成智慧教育数据中心等。

2、数据标准化

(三)教学方面——支持智慧教学法的方法创新

1、提升教师素养

机器学习作为一种新型技术,容易造成教师对新型机器学习支持的教育软件和服务的用户体验不佳,原因在于教师信息素养与此类新型软件的不匹配。使用新型软件加重了教师的工作负载,如何将其与现有的教学进行整合,对教师来说也是一大挑战。因此,一方面需要不断提升教师的信息素养来适应新型技术的应用,另一方面在软件开发过程中需要考虑教师的需求,帮助教师更容易地接受新型技术并融入教学中。

2、提高教师参与

机器学习常应用于智能教学系统中,而这类系统通常会弱化教师的参与,学习者根据自己的学习步调就能开展学习。从短期来看,智能化推送减少了学习者的认知负载;但从长远来看,过度依赖系统建议,学习者自我反省、自我意识和自主学习的能力将不断弱化。虽然机器学习应用能够实现智能化和自动化,但是教师能为学生提供情感交互、学习辅导和教学法设计,这是机器学习目前无法实现的。因此,应该强调机器学习应用系统与教师的协作而非取代教师来优化效能。在应用过程中需要不断提高教师的参与并激发其积极性,从而与系统优势互补、共同参与,促进教学法的创新。

综上所述,机器学习可以有效助力智慧教育,其在教育人工智能和教育数据挖掘方面发挥的作用也是其他技术无法取代的。随着机器学习技术的不断发展和应用,其与教育领域的融合定会不断推动教育创新。

THE END
1.数据挖掘的主要技术和应用在下面的部分中,我们将详细介绍数据挖掘的核心概念、算法原理、应用实例等。 2. 核心概念与联系 在数据挖掘中,有一些核心概念需要了解: 数据:数据是数据挖掘过程中的基本单位,可以是数字、文本、图像等形式。 特征:特征是数据中用于描述对象的属性,例如年龄、性别、收入等。 https://blog.csdn.net/universsky2015/article/details/137300243
2.数据挖掘应用(精选十篇)1 数据挖掘的定义 数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其它模型化处理,从中提取辅助商https://www.360wenmi.com/f/cnkeymoknlxl.html
3.大数据时代下数据挖掘技术的应用腾讯云开发者社区大数据时代下数据挖掘技术的应用 原文链接:https://mp.weixin.qq.com/s/bxSEO4gKQ-BbDWT1BNnwyw 随着社会信息化的迅速发展,无论是数据的变化速率,还是数据的新增种类都在不断更新,数据研究变得越来越复杂,这意味着“大数据时代”到来。2011年,互联网数据中心(internet data center,IDC)将大数据重新定义为:在https://cloud.tencent.com/developer/article/1454508
4.数据挖掘在生产物流过程中的应用论文摘要:近几年,信息化物流网络体系的应用促使数据规模得到不断扩大,产生了巨大的数据流。在企业的物流过程当中,涉及到的数据较多,容易造成数据混乱的现象,所以如何进行高效的数据挖掘,是企业面临的重要问题。本文着重分析了数据挖掘在生产物流过程中的应用,并对应用过程中注意的问题进行分析。 https://biyelunwen.yjbys.com/fanwen/jiaotongwuliu/714954.html
5.数据发掘数据挖掘大数据发展流程与应用.ppt10数据发掘数据挖掘大数据发展流程与应用5/8/2024数据挖掘技术流程从数据本身来考虑,通常数据挖掘需要有数据清理、数据变换、数据挖掘实施过程、模式评估和知识表示等8个步骤。 信息收集数据集成数据规约数据清理数据变换数据挖掘过程模式评估知识表示数据预处理这是一个反复循环的过程,每一个步骤如果没有达到预期目标,都https://m.renrendoc.com/paper/327213498.html
6.SAS数据挖掘实战篇一刘小子但是,作为一个数据挖掘应用来说,数据挖掘仅仅是整个过程中的一个环节。数据挖掘项目的成功需要花费相当的心血,依照规范的流程进行操作。一般来说,数据挖掘需要经历以下过程:确定挖掘对象、收集数据、数据预处理、数据挖掘和信息解释。在整个数据挖掘过程中,信息可视化技术扮演着很重要的角色。下面详细介绍各个数据挖掘的https://www.cnblogs.com/amengduo/p/9587575.html
7.数据挖掘过程中多维数据可视化技术研究与应用其中在可视化过程中对于在数据可视化维度控制显示方面往往缺乏良好的指导,需要用户根据经验逐步试探性的对维度的排列顺序以及用于可视化显示的维数进行控制,这样一些重要规律可能被忽略。本文利用维相似度算法对数据维的排列顺序进行规划;采用属性相关分析算法对参与显示的维数进行控制。通过实验验证上述算法提高了可视化的显示https://wap.cnki.net/touch/web/Dissertation/Article/-2007123314.html
8.化工生产过程数据挖掘系统的研究与应用计算机与应用化学 北大核心CSTPCD ISSN:1001-4160 年,卷(期):2008,25(7) MPLS VPN在多分支企业组网中的研究与应用 周建鹏;中国新通信; 数据挖掘在装备储存和使用过程中的应用研究 马可欣等;火力与指挥控制; 数据挖掘技术在钢铁领域应用研究 张云等;通讯世界; https://d.wanfangdata.com.cn/Periodical/jsjyyyhx200807001
9.数据挖掘技术应用实例第7章 数据挖掘在产品设计中的应用 7.1.产品设计的概念 7.2 产品概念设计的体系结构 7.2.1 产品概念设计的内涵 7.2.2 产品概念设计的特点 7.2.3 产品概念设计的理论及发展 7.2.4 产品概念设计的体系结构 7.3 面向产品设计的数据挖掘模型 7.3.1 数据挖掘过程 7.3.2 需求分析数据挖掘过程的实现 7.https://baike.baidu.com/item/%E6%95%B0%E6%8D%AE%E6%8C%96%E6%8E%98%E6%8A%80%E6%9C%AF%E5%BA%94%E7%94%A8%E5%AE%9E%E4%BE%8B/4799787
10.数据挖掘论文它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全https://www.unjs.com/lunwen/f/20220924130749_5650839.html
11.数据挖掘论文(优选10篇)1数据挖掘技术概述 数据挖掘技术就是指在超多随机数据中提取隐含信息,并且将其整合后应用 在知识处理体系 的技术过程。若是从技术层面判定数据挖掘技术,则需要将其划 分在商业数据处理技术中,整合商业数据提取和转化机制,并且建构更加系统化 的分析模型和处理机制,从根本上优化商业决策。借助数据挖掘技术能建构完整 http://www.360doc.com/content/23/1127/11/82785916_1105448548.shtml
12.数据挖掘应用领域有哪些mob649e81563816的技术博客数据挖掘应用领域有哪些 数据挖掘是一种从大量数据中提取有价值信息的过程,它在各个行业和领域都有着广泛的应用。本文将介绍数据挖掘在不同领域的应用,并通过代码示例来展示其中的一些常见技术和方法。 1. 金融领域 在金融领域,数据挖掘可以应用于风险评估、信用评分、投资组合管理等方面。下面是一个简单的示例,使用Pyhttps://blog.51cto.com/u_16175441/7195496
13.过程挖掘:数据科学实战MOOC中国过程挖掘在传统的基于模型的过程分析(如模拟和其他业务流程管理技术)和以数据为中心的分析技术(如机器学习和数据挖掘)之间搭建了一座重要桥梁。过程挖掘寻求事件数据(如观察行为)和过程模型(手制或自动发现)之间的交汇。该技术最近才得以应用,但是却适用于各种类型的操作过程(组织和系统)。应用实例包括:分析医院的治疗https://www.mooc.cn/course/1271.html
14.数据分析与挖掘11篇(全文)Web数据挖掘过程是一个完整的知识发现的过程,但与传统数据和数据仓库相比,Web上的信息是非结构化或半结构化的、动态的,并且是容易造成混淆的,所以很难直接以Web网页上的数据进行数据挖掘,而必须经过必要的数据处理。因此可以将Web数据挖掘分为确定业务对象、数据准备、数据挖掘、结果分析等四个步骤。 https://www.99xueshu.com/w/ikeyp687ycyz.html
15.什么是数据挖掘?——数据挖掘的过程,方法和实例d. 社交网络分析:通过挖掘社交网络中的关系和影响网络,发现社交网络中的意见领袖和影响力人物等。 总结: 数据挖掘是一项重要的技术,通过挖掘数据中的规律和趋势,可以帮助企业和组织做出更加准确的决策和预测。本文介绍了数据挖掘的基本过程、常用方法和一些应用实例,希望对读者了解和应用数据挖掘技术有所帮助。https://www.jiandaoyun.com/fe/sjwjsjwjdg/