人工智能常用的29种算法

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

2023.05.07江苏

根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。

1.监督式学习:

在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(LogisticRegression)和反向传递神经网络(BackPropagationNeuralNetwork)

2.非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。

3.半监督式学习:

在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(GraphInference)或者拉普拉斯支持向量机(LaplacianSVM.)等。

4.强化学习:

在企业数据应用的场景下,人们最常用的可能就是监督式学习和非监督式学习的模型。在图像识别等领域,由于存在大量的非标识的数据和少量的可标识数据,目前半监督式学习是一个很热的话题。而强化学习更多的应用在机器人控制及其他需要进行系统控制的领域。

5.算法类似性

根据算法的功能和形式的类似性,我们可以把算法分类,比如说基于树的算法,基于神经网络的算法等等。当然,机器学习的范围非常庞大,有些算法很难明确归类到某一类。而对于有些分类来说,同一分类的算法可以针对不同类型的问题。这里,我们尽量把常用的算法按照最容易理解的方式进行分类。

6.回归算法:

回归算法是试图采用对误差的衡量来探索变量之间的关系的一类算法。回归算法是统计机器学习的利器。在机器学习领域,人们说起回归,有时候是指一类问题,有时候是指一类算法,这一点常常会使初学者有所困惑。常见的回归算法包括:最小二乘法(OrdinaryLeastSquare),逻辑回归(LogisticRegression),逐步式回归(StepwiseRegression),多元自适应回归样条(MultivariateAdaptiveRegressionSplines)以及本地散点平滑估计(LocallyEstimatedScatterplotSmoothing)

7.基于实例的算法

基于实例的算法常常用来对决策问题建立模型,这样的模型常常先选取一批样本数据,然后根据某些近似性把新数据与样本数据进行比较。通过这种方式来寻找最佳的匹配。因此,基于实例的算法常常也被称为“赢家通吃”学习或者“基于记忆的学习”。常见的算法包括k-NearestNeighbor(KNN),学习矢量量化(LearningVectorQuantization,LVQ),以及自组织映射算法(Self-OrganizingMap,SOM)

8.正则化方法

正则化方法是其他算法(通常是回归算法)的延伸,根据算法的复杂度对算法进行调整。正则化方法通常对简单模型予以奖励而对复杂算法予以惩罚。常见的算法包括:RidgeRegression,LeastAbsoluteShrinkageandSelectionOperator(LASSO),以及弹性网络(ElasticNet)。

9.决策树学习

决策树算法根据数据的属性采用树状结构建立决策模型,决策树模型常常用来解决分类和回归问题。常见的算法包括:分类及回归树(ClassificationAndRegressionTree,CART),ID3(IterativeDichotomiser3),C4.5,Chi-squaredAutomaticInteractionDetection(CHAID),DecisionStump,随机森林(RandomForest),多元自适应回归样条(MARS)以及梯度推进机(GradientBoostingMachine,GBM)

10.贝叶斯方法

贝叶斯方法算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-DependenceEstimators,AODE),以及BayesianBeliefNetwork(BBN)。

11.基于核的算法

基于核的算法中最著名的莫过于支持向量机(SVM)了。基于核的算法把输入数据映射到一个高阶的向量空间,在这些高阶向量空间里,有些分类或者回归问题能够更容易的解决。常见的基于核的算法包括:支持向量机(SupportVectorMachine,SVM),径向基函数(RadialBasisFunction,RBF),以及线性判别分析(LinearDiscriminateAnalysis,LDA)等

12.聚类算法

聚类,就像回归一样,有时候人们描述的是一类问题,有时候描述的是一类算法。聚类算法通常按照中心点或者分层的方式对输入数据进行归并。所以的聚类算法都试图找到数据的内在结构,以便按照最大的共同点将数据进行归类。常见的聚类算法包括k-Means算法以及期望最大化算法(ExpectationMaximization,EM)。

13.关联规则学习

关联规则学习通过寻找最能够解释数据变量之间关系的规则,来找出大量多元数据集中有用的关联规则。常见算法包括Apriori算法和Eclat算法等。

14.人工神经网络

人工神经网络算法模拟生物神经网络,是一类模式匹配算法。通常用于解决分类和回归问题。人工神经网络是机器学习的一个庞大的分支,有几百种不同的算法。(其中深度学习就是其中的一类算法,我们会单独讨论),重要的人工神经网络算法包括:感知器神经网络(PerceptronNeuralNetwork),反向传递(BackPropagation),Hopfield网络,自组织映射(Self-OrganizingMap,SOM)。学习矢量量化(LearningVectorQuantization,LVQ)

15.深度学习

16.降低维度算法

像聚类算法一样,降低维度算法试图分析数据的内在结构,不过降低维度算法是以非监督学习的方式试图利用较少的信息来归纳或者解释数据。这类算法可以用于高维数据的可视化或者用来简化数据以便监督式学习使用。

常见的算法包括:主成份分析(PrincipleComponentAnalysis,PCA),偏最小二乘回归(PartialLeastSquareRegression,PLS),Sammon映射,多维尺度(Multi-DimensionalScaling,MDS),投影追踪(ProjectionPursuit)等。

17.集成算法:

集成算法用一些相对较弱的学习模型独立地就同样的样本进行训练,然后把结果整合起来进行整体预测。集成算法的主要难点在于究竟集成哪些独立的较弱的学习模型以及如何把学习结果整合起来。

这是一类非常强大的算法,同时也非常流行。常见的算法包括:Boosting,BootstrappedAggregation(Bagging),AdaBoost,堆叠泛化(StackedGeneralization,Blending),梯度推进机(GradientBoostingMachine,GBM),随机森林(RandomForest)。

THE END
1.如何入门机器学习算法?人工智能基础二、算法基石:构建智慧的蓝图 人工智能主要是通过算法来进行机器学习的——例如决策树、支持向量机、神经网络等常用算法:决策树:它以树状结构表示决策过程,通过一系列的判断条件,将数据分类到不同的叶子节点。这种直观易懂的方式,使得决策树在分类和预测任务中表现出色。支持向量机:它寻找一个超平面,将不同类别https://baijiahao.baidu.com/s?id=1815412788352198905&wfr=spider&for=pc
2.聊聊算法,AI算法和传统算法算法的应用范围很广,常规基础算法与数据结构紧密相关,该类算法更多被用于确定性领域,比如对于链表、数组、图和堆等等的各种搜索和排序算法。另一大类算法是机器学习算法,该类算法主要用于非确定性领域,主要提供了根据某种机制或数据来学习人类某种能力的框架算法,从而实现人工智能。http://www.360doc.com/content/20/1202/20/32196507_949153088.shtml
3.机器学习十大算法!入门看这个就够了~机器学习算法梯度增强算法的特点是精度较高。此外,LightGBM 算法具有令人难以置信的高性能。 免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。 https://blog.csdn.net/m0_60720471/article/details/119818963
4.人工智能十大流行算法,通俗易懂讲明白本文学堂君就为大家用最简单的语言来介绍目前最流行的10种人工智能的算法,让对人工智能感兴趣,或想要入门的同学,能有更为直观的了解。 1 线性回归 线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散https://mp.weixin.qq.com/s?__biz=MzIxMTM1NDExMg==&mid=2247503233&idx=1&sn=5d933189a5938d910a421ef8f3a49eba&chksm=97541aeea02393f80fd51d0c918bf76d65f86ac49f902128236c981ae01e78828465f6ce4ed5&scene=27
5.解析人工智能中深度学习的经典算法解析人工智能中深度学习的经典算法 描述 (文章来源:数智网) 深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种方法都具有其独特的学习模型:多层感知机 、卷积神经网络等属于监 督学习;深度置信网 、自动编码器 、去噪自动编码器 、稀疏编码等属于无监督学习。https://m.elecfans.com/article/1130302.html
6.《深度学习人工智能算法,机器学习奠基之作,AI圣经》([美]Ian当当网图书频道在线销售正版《深度学习 人工智能算法,机器学习奠基之作,AI圣经》,作者:[美]Ian Goodfellow(伊恩·古德费洛)、[加]Yoshua Bengio(约书亚·本吉奥)、[加]Aaron Courville(亚伦·库维尔),出版社:人民邮电出版社。最新《深度学习 人工智能算法,http://product.dangdang.com/25111382.html
7.人工智能算法(卷3)(豆瓣)【8级,88+106+148k】这是我第二次正式学习人工智能的尝试,第一次是在laioffer的课上,那时我还是一个连算法题都没学完的小白,而现在我已经是一个从业多年的老程序员了。这次我本该有很多技术上的收获的,但可惜我最近一两个月的工作压力太大,这套书读下来昏昏沉沉,并没有 (展开) https://book.douban.com/subject/35401385/
8.《人工智能算法基础》高清完整PDF版下载飞燕网本书立足于理论,从实例入手,将理论知识和实际应用结合,目标是让读者能够快速地熟悉人工智能中经典算法。全书分为4篇,共20章。其中第1篇为基础算法篇,主要讲述排序、查找、线性结构、树、队列、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,主要讲述分类算法、回归算法、聚类算法、降维算法和集成算法;第http://www.hbase.cn/archives/1287.html
9.算法捉虫:深度学习和计算机视觉改变昆虫学澎湃号·湃客3. 人工智能带来希望 不过,近十年来,深度学习等技术的发展为昆虫学这一古老的学科带来了新的机遇。基于深度学习算法的图像处理技术和计算机视觉技术正在替代传统的人工观测方法。 在农业中,昆虫通常被视为害虫,因此已有的昆虫检测技术往往是通过检测昆虫的行为,开发更加高效的杀虫剂从而防治虫害。不过,科研人员可以基于同https://www.thepaper.cn/newsDetail_forward_11862390
10.一文看懂机器学习「3种学习方法+7个实操步骤+15种常见算法」机器学习、人工智能、深度学习是什么关系? 1956 年提出 AI 概念,短短3年后(1959)Arthur Samuel就提出了机器学习的概念: Field of study that gives computers the ability to learn without being explicitly programmed. 机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从https://easyai.tech/ai-definition/machine-learning/
11.人工智能平台PAI机器学习建模训练部署智能推荐人工智能人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是 AI Native 的大模型与 AIGC 工程平台,提供包含数据集管理、算力管理、模型工具链、模型开发、模型训练、模型部署、AI资产管理在内的功能模块,内置100+种大模型最佳实践,为用户提供高性能、高稳定、企业级的大模型工程化能力。 https://www.aliyun.com/product/bigdata/learn
12.人工智能十大算法已公布,考验你对人工智能了解程度的时候到了摘要人工智能一直是人类社会科技发展的验证,关于他的思考一直在继续,当然除了这些,我们也需要学习人工智能,比如,我们需要了解人工智能十大算法,这些知识才是人工智能最实际的东西,并且这也是很重要的知识,那么什么是人工智能十大算法,环球网校的宣布带大家一起分析。 https://m.hqwx.com/news/2020-4/15877135755697.html
13.国家气候中心应用人工智能强化气候预测——锻造“利器”看清未来气候图景在高性能计算机、大数据、先进的机器学习和深度学习算法的支持下,人工智能为提高气候预测技巧提供了新的思路和契机。 “基于人工智能的气候预测技术比动力模式更易于实现,比经验统计方法更能建立复杂和贴近真实情况的统计模型,尤其是深度学习,它能够直接从原始环流场信息自动构建最优化的预报因子和非线性预测关系,突破了传https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202308/t20230811_5707451.html
14.人工智能学习心得(通用28篇)网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的`切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如https://www.yjbys.com/xindetihui/fanwen/3342600.html
15.BP神经网络的Matlab实现——人工智能算法腾讯云开发者社区这几天在各大媒体上接触到了人工智能机器学习,觉得很有意思,于是开始入门最简单的机器算法——神经网络训练算法(Neural Network Training);以前一直觉得机器学习很高深,到处是超高等数学、线性代数、数理统计。入坑发现确实是这样!但是呢由项目实例驱动的学习比起为考试不挂科为目的的学习更为高效、实用!在遗传算法、神https://cloud.tencent.com/developer/article/2033420