人工智能机器学习神经网络和深度学习的发展历程(下)模型学习算法神经网络发展

人工智能机器学习神经网络和深度学习发展史

Hello,这里是行上行下

我是隔壁壹脑云准时不拖更的袅袅~

一、前言

在介绍神经网络和深度学习起源之前,首先介绍一下人类大脑是怎么工作的。1981年的诺贝尔医学奖,分发给了DavidHubel、TorstenWiesel和PogerSperry。前两位的主要贡献是发现了人的视觉系统的信息处理是分级的。如下图所示,从视网膜(Retina)出发,经过低级的V1区提取边缘特征,到V2区形成基本形状或目标的局部,再到高层V4形成整个目标(如判定为一张人脸),以及到更高层的PFC(前额叶皮层)进行分类判断等。从视觉处理机制可以看出高层的特征是低层特征的组合,从低层到高层的特征表达越来越抽象和概念化。

这个发现激发了人们对于神经系统的进一步思考。大脑的工作过程是一个对接收信号不断迭代、不断抽象概念化的过程。例如,从原始信号摄入开始(瞳孔摄入像素),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定眼前物体的形状,比如是椭圆形),然后进一步抽象(大脑进一步判定该物体是一张人脸),最后识别人脸。这个过程其实和我们的常识是相吻合的,因为复杂的图形往往就是由一些基本结构组合而成的。同时还可以看出:大脑是一个深度架构,认知过程也是深度的。

而深度学习,恰恰就是通过组合低层特征形成更加抽象的高层特征(或属性类别)。例如,在计算机视觉领域,深度学习算法从原始图像去学习得到一个低层次表达,例如边缘检测器、小波滤波器等,然后在这些低层次表达的基础上,通过线性或者非线性组合,来获得一个高层次的表达。此外,不仅图像存在这个规律,声音也是类似的。

二、起源阶段

1943年,心理学家麦卡洛克和数学逻辑学家皮兹发表论文《神经活动中内在思想的逻辑演算》,提出了MP模型。MP模型是模仿神经元的结构和工作原理,构成出的一个基于神经网络的数学模型,本质上是一种“模拟人类大脑”的神经元模型。MP模型作为人工神经网络的起源,开创了人工神经网络的新时代,也奠定了神经网络模型的基础。当时提出MP模型是希望能够用计算机来模拟人的神经元反应的过程,该模型将神经元的工作过程简化为了三部分:输入信号线性加权,求和,非线性激活(阈值法)。如下图所示:

1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。

1949年,加拿大著名心理学家唐纳德·赫布在论文《Theorganizationofbehavior》中提出了神经心理学理论。赫布认为神经网络的学习过程最终是发生在神经元之间的突出部位,突触的连接强度随着突触前后神经元的活动而变化,变化的量与两个神经元的活性之和成正比。然后在《行为的组织》中提出了一种基础无监督学习的规则—赫布学习规则(HebbRule)。赫布规则模仿人类认知世界的过程建立一种“网络模型”,该网络模型针对训练集进行大量的训练并提取训练集的统计特征,然后按照样本的相似程度进行分类,把相互之间联系密切的样本分为一类,这样就把样本分成了若干类。赫布规则与“条件反射”机理一致,为以后的神经网络学习算法奠定了基础,具有重大的历史意义。

20世纪50年代末,在MP模型和赫布学习规则的研究基础上,美国科学家罗森布拉特发现了一种类似于人类学习过程的算法—感知机学习。并于1958年,正式提出了由两层神经元组成的神经网络,称之为感知器(Perceptron)。感知器本质上是一种线性模型,可以对输入的训练集数据进行二分类,且能够在训练集中自动更新权值。感知器的提出引起了大量科学家对人工神经网络研究的兴趣,对神经网络的发展具有里程碑式的意义。

在1969年,马文·明斯基和西蒙·派珀特共同编写了一本书籍《感知器》,在书中他们证明了单层感知器无法解决线性不可分问题(例如:异或问题)。由于这个致命的缺陷以及没有及时推广感知器到多层神经网络中,在20世纪70年代,人工神经网络进入了第一个寒冬期,人们对神经网络的研究也停滞了将近20年。

三、发展阶段

真理的果实总是垂青于能够坚持研究的科学家。尽管人工神经网络ANN的研究陷入了前所未有的低谷,但仍有为数不多的学者致力于ANN的研究。

1982年,著名物理学家约翰·霍普菲尔德发明了Hopfield神经网络。Hopfield神经网络是一种结合存储系统和二元系统的循环神经网络。Hopfield网络也可以模拟人类的记忆,根据激活函数的选取不同,有连续型和离散型两种,分别用于优化计算和联想记忆。但由于容易陷入局部最小值的缺陷,该算法并未在当时引起很大的轰动。

1984年,辛顿与年轻学者谢诺夫斯基等合作提出了大规模并行网络学习机,并明确提出隐藏单元的概念,这种学习机后来被称为玻尔兹曼机(Boltzmannmachine)。他们利用统计物理学的概念和方法,首次提出的多层网络的学习算法,称为玻尔兹曼机模型。

1991年BP算法被指出存在梯度消失问题,也就是说在误差梯度后向传递的过程中,后层梯度以乘性方式叠加到前层,由于Sigmoid函数的饱和特性,后层梯度本来就小,误差梯度传到前层时几乎为0,因此无法对前层进行有效的学习,该问题直接阻碍了深度学习的进一步发展。

此外90年代中期,支持向量机算法诞生(SVM算法)等各种浅层机器学习模型被提出,SVM也是一种有监督的学习模型,应用于模式识别,分类以及回归分析等。支持向量机以统计学为基础,和神经网络有明显的差异,支持向量机等算法的提出再次阻碍了深度学习的发展。

四、崛起阶段

2011年,ReLU激活函数被提出,该激活函数能够有效的抑制梯度消失问题。2011年以来,微软首次将DL应用在语音识别上,取得了重大突破。微软研究院和Google的语音识别研究人员先后采用深度神经网络DNN技术降低语音识别错误率至20%~30%,是语音识别领域十多年来最大的突破性进展。

2012年,DNN技术在图像识别领域取得惊人的效果,在ImageNet评测上将错误率从26%降低到15%。在这一年,DNN还被应用于制药公司的DrugeActivity预测问题,并获得世界最好成绩。2012年,在著名的ImageNet图像识别大赛中,杰弗里·辛顿课题组为了证明深度学习的潜力,首次参加ImageNet图像识别比赛,其通过构建的CNN网络AlexNet一举夺得冠军,且碾压第二名(SVM方法)的分类性能。也正是由于该比赛,CNN吸引到了众多研究者的注意。深度学习算法在世界大赛的脱颖而出,也再一次吸引了学术界和工业界对于深度学习领域的注意。

随着深度学习技术的不断进步以及数据处理能力的不断提升,2014年,Facebook基于深度学习技术的DeepFace项目,在人脸识别方面的准确率已经能达到97%以上,跟人类识别的准确率几乎没有差别。这样的结果也再一次证明了深度学习算法在图像识别方面的一骑绝尘。

2016年3月,由谷歌(Google)旗下DeepMind公司开发的AlphaGo(基于深度学习算法)与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜;2016年末2017年初,该程序在中国棋类网站上以“大师”(Master)为注册帐号与中日韩数十位围棋高手进行快棋对决,连续60局无一败绩。

参考资料:

1、百度百科,神经网络(通信定义)

阅读链接:

2、百度百科,深度学习(人工神经网络的研究的概念)

3、博客园,《深度学习的起源、发展和现状》

4、博客园,《人工智能、机器学习及深度学习的起源和发展》

5、程序员客栈,《深度学习的起源、发展和挑战总结》

6、CSDN,《人工神经网络简介》

7、腾讯云,《浅谈神经网络发展史:从莫克罗-彼特氏神经模型到深层神经网络》

8、搜狐,《CMU论文:一部深度学习发展史,看神经网络兴衰更替》

11、知乎,《神经网络发展历史》

作者:袅袅

校对:喵君姐姐、TingZhang

不感兴趣

看过了

取消

人点赞

人收藏

打赏

我有话说

0/500

同步到新浪微博

您的申请提交成功

您已认证成功,可享专属会员优惠,买1年送3个月!开通会员,资料、课程、直播、报告等海量内容免费看!

THE END
1.如何入门机器学习算法?人工智能基础二、算法基石:构建智慧的蓝图 人工智能主要是通过算法来进行机器学习的——例如决策树、支持向量机、神经网络等常用算法:决策树:它以树状结构表示决策过程,通过一系列的判断条件,将数据分类到不同的叶子节点。这种直观易懂的方式,使得决策树在分类和预测任务中表现出色。支持向量机:它寻找一个超平面,将不同类别https://baijiahao.baidu.com/s?id=1815412788352198905&wfr=spider&for=pc
2.聊聊算法,AI算法和传统算法算法的应用范围很广,常规基础算法与数据结构紧密相关,该类算法更多被用于确定性领域,比如对于链表、数组、图和堆等等的各种搜索和排序算法。另一大类算法是机器学习算法,该类算法主要用于非确定性领域,主要提供了根据某种机制或数据来学习人类某种能力的框架算法,从而实现人工智能。http://www.360doc.com/content/20/1202/20/32196507_949153088.shtml
3.机器学习十大算法!入门看这个就够了~机器学习算法梯度增强算法的特点是精度较高。此外,LightGBM 算法具有令人难以置信的高性能。 免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。 https://blog.csdn.net/m0_60720471/article/details/119818963
4.人工智能十大流行算法,通俗易懂讲明白本文学堂君就为大家用最简单的语言来介绍目前最流行的10种人工智能的算法,让对人工智能感兴趣,或想要入门的同学,能有更为直观的了解。 1 线性回归 线性回归(Linear Regression)可能是最流行的机器学习算法。线性回归就是要找一条直线,并且让这条直线尽可能地拟合散https://mp.weixin.qq.com/s?__biz=MzIxMTM1NDExMg==&mid=2247503233&idx=1&sn=5d933189a5938d910a421ef8f3a49eba&chksm=97541aeea02393f80fd51d0c918bf76d65f86ac49f902128236c981ae01e78828465f6ce4ed5&scene=27
5.解析人工智能中深度学习的经典算法解析人工智能中深度学习的经典算法 描述 (文章来源:数智网) 深度学习作为机器学习的一个分支,其学习方法可以分为监督学习和无监督学习。两种方法都具有其独特的学习模型:多层感知机 、卷积神经网络等属于监 督学习;深度置信网 、自动编码器 、去噪自动编码器 、稀疏编码等属于无监督学习。https://m.elecfans.com/article/1130302.html
6.《深度学习人工智能算法,机器学习奠基之作,AI圣经》([美]Ian当当网图书频道在线销售正版《深度学习 人工智能算法,机器学习奠基之作,AI圣经》,作者:[美]Ian Goodfellow(伊恩·古德费洛)、[加]Yoshua Bengio(约书亚·本吉奥)、[加]Aaron Courville(亚伦·库维尔),出版社:人民邮电出版社。最新《深度学习 人工智能算法,http://product.dangdang.com/25111382.html
7.人工智能算法(卷3)(豆瓣)【8级,88+106+148k】这是我第二次正式学习人工智能的尝试,第一次是在laioffer的课上,那时我还是一个连算法题都没学完的小白,而现在我已经是一个从业多年的老程序员了。这次我本该有很多技术上的收获的,但可惜我最近一两个月的工作压力太大,这套书读下来昏昏沉沉,并没有 (展开) https://book.douban.com/subject/35401385/
8.《人工智能算法基础》高清完整PDF版下载飞燕网本书立足于理论,从实例入手,将理论知识和实际应用结合,目标是让读者能够快速地熟悉人工智能中经典算法。全书分为4篇,共20章。其中第1篇为基础算法篇,主要讲述排序、查找、线性结构、树、队列、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,主要讲述分类算法、回归算法、聚类算法、降维算法和集成算法;第http://www.hbase.cn/archives/1287.html
9.算法捉虫:深度学习和计算机视觉改变昆虫学澎湃号·湃客3. 人工智能带来希望 不过,近十年来,深度学习等技术的发展为昆虫学这一古老的学科带来了新的机遇。基于深度学习算法的图像处理技术和计算机视觉技术正在替代传统的人工观测方法。 在农业中,昆虫通常被视为害虫,因此已有的昆虫检测技术往往是通过检测昆虫的行为,开发更加高效的杀虫剂从而防治虫害。不过,科研人员可以基于同https://www.thepaper.cn/newsDetail_forward_11862390
10.一文看懂机器学习「3种学习方法+7个实操步骤+15种常见算法」机器学习、人工智能、深度学习是什么关系? 1956 年提出 AI 概念,短短3年后(1959)Arthur Samuel就提出了机器学习的概念: Field of study that gives computers the ability to learn without being explicitly programmed. 机器学习研究和构建的是一种特殊算法(而非某一个特定的算法),能够让计算机自己在数据中学习从https://easyai.tech/ai-definition/machine-learning/
11.人工智能平台PAI机器学习建模训练部署智能推荐人工智能人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是 AI Native 的大模型与 AIGC 工程平台,提供包含数据集管理、算力管理、模型工具链、模型开发、模型训练、模型部署、AI资产管理在内的功能模块,内置100+种大模型最佳实践,为用户提供高性能、高稳定、企业级的大模型工程化能力。 https://www.aliyun.com/product/bigdata/learn
12.人工智能十大算法已公布,考验你对人工智能了解程度的时候到了摘要人工智能一直是人类社会科技发展的验证,关于他的思考一直在继续,当然除了这些,我们也需要学习人工智能,比如,我们需要了解人工智能十大算法,这些知识才是人工智能最实际的东西,并且这也是很重要的知识,那么什么是人工智能十大算法,环球网校的宣布带大家一起分析。 https://m.hqwx.com/news/2020-4/15877135755697.html
13.国家气候中心应用人工智能强化气候预测——锻造“利器”看清未来气候图景在高性能计算机、大数据、先进的机器学习和深度学习算法的支持下,人工智能为提高气候预测技巧提供了新的思路和契机。 “基于人工智能的气候预测技术比动力模式更易于实现,比经验统计方法更能建立复杂和贴近真实情况的统计模型,尤其是深度学习,它能够直接从原始环流场信息自动构建最优化的预报因子和非线性预测关系,突破了传https://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202308/t20230811_5707451.html
14.人工智能学习心得(通用28篇)网络学习与多参加线下培训学习方式自我成长,提高课程融合能力和课程开发能力;针对实施场地和怎么教的问题,大部分学校没有开展起来的原因可能主要也是因为资金对场地和平台投入比较大,但是可以利用信息技术课堂作为人工智能教育的`切入点,融入数据、算法、程序设计、机器人课程、开源硬件类课程等,利用项目式教学或其他活动如https://www.yjbys.com/xindetihui/fanwen/3342600.html
15.BP神经网络的Matlab实现——人工智能算法腾讯云开发者社区这几天在各大媒体上接触到了人工智能机器学习,觉得很有意思,于是开始入门最简单的机器算法——神经网络训练算法(Neural Network Training);以前一直觉得机器学习很高深,到处是超高等数学、线性代数、数理统计。入坑发现确实是这样!但是呢由项目实例驱动的学习比起为考试不挂科为目的的学习更为高效、实用!在遗传算法、神https://cloud.tencent.com/developer/article/2033420