AI如何能成为商业的主流?这需要不同研究方法的结合,以及大量人类的智慧。
一些以统计学为导向的机器学习研究流派,比如联结学派、贝叶斯学派和类推学派,会担心符号学派推动的“human-in-the-loop”方法无法扩展。但是,我们期待这一融合了几种流派的、人类和机器间相互反馈的环,在接下来的几年中,会在企业内部变得更为常见。
机器学习概览
1.什么是机器学习?
机器通过分析大量数据来进行学习。比如说,不需要通过编程来识别猫或人脸,它们可以通过使用图片来进行训练,从而归纳和识别特定的目标。
2.机器学习和人工智能的关系
机器学习是一种重在寻找数据中的模式并使用这些模式来做出预测的研究和算法的门类。机器学习是人工智能领域的一部分,并且和知识发现与数据挖掘有所交集。
机器学习演化史:各学派发展融合,最终让自动机器成为可能
长久以来,各种派别的人工智能研究者总是在相互竞争。相互合作的时机到来了吗?他们不得不握手言和,因为只有合作将算法整合才能实现真正的通用人工智能(AGI)。下面,我们就来看看机器学习方法走过了什么样的历程,未来又将如何?
机器学习:工作原理及适用场景
机器学习通过使人类能够“教”机器如何学习,使人类和机器的联系更为紧密。机器通过处理合适的训练集来学习,这些训练集包含优化一个算法所需的各种特征。这个算法使机器能够执行特定的任务,例如对电子邮件进行分类。
但是,其好处远远不止过滤电子邮件,那些十年前就能做到了。如今,在机器学习的助力下,无人机可以实时近距离地拍摄例如桥梁之类的地方,然后快速、准确地评估重建项目的范围。
下面,普华永道的信息图示概述了机器学习的工作原理,机器学习与人工智能的关系,以及企业应该在哪些地方利用它们。
机器学习能够通过“学习”大量的数据,在不需要人为编程的情况下,生成以及识别特定的对象,比如人脸。目前,机器学习也是商业应用中最常用的算法。
那么,机器学习跟人工智能之间具体是怎样的关系呢?
根据普华永道信息图的总结,机器学习的主要流程/步骤:
接下来,我们看看机器学习在传统编程、统计学这些常见方法中处于什么样的地位。
与传统编程和统计学方法不同,在机器学习当中,数据科学家使用训练数据“教育”计算机,然后让计算机执行任务。由此,产生了智能应用(IntelligentApp)。图中所举的例子是智能农业,通过无人机采集的数据进行精准的施肥、灌溉等操作。
在实际应用中机器学习有很多适用场景。下图给出了3个例子:
1.快速三维成图和建模对一个铁路桥梁重建项目,PwC数据科学家和领域专家将机器学习应用于无人机收集到的数据。这样的组合使得对正在进行的工作进行精确的监控和快速的反馈成为可能。
2.加强分析以减轻风险为了检测内幕交易,PwC结合机器学习与其他分析技术,发掘更全面的用户资料,更深入地了解复杂的可疑行为。
3.预测最佳表现者PwC使用机器学习和其他分析技术来评估墨尔本杯参赛的各匹马的潜力。
实际应用机器学习:什么才是特定任务的正确算法?
那么,AI如何解决商业上的问题,例如帮助你弄清楚为什么流失了客户,或评估信贷申请人的风险?这取决于许多因素,尤其是算法使用的数据以及要训练的类型。什么是特定任务的正确算法?报告调查了最常用的算法以及它们解决的商业问题。
下面列举了最常用的算法及其使用案例。
机器学习中常用的算法有很多,具体需要用哪种,很大程度上取决于你手头的数据及其特征,你的训练目标,尤其是具体的使用场景。除非特殊情况,不必使用最复杂的算法。下面是常见的机器学习算法。
1.决策树(DecisionTrees)
决策树是一个决策支持工具,它使用树形图或决策模型以及序列可能性。包括各种偶然事件的后果、资源成本、功效。从商务决策的角度来看,大部分情况下,决策树是一个人为了评估做出正确决定的概率需要问的是/否问题的最小数值。它能让你以一个结构化和系统化的方式来处理这个问题,然后得出一个合乎逻辑的结论。
2.支持向量机
3.逻辑回归
回归是非常常用的方法。其中,逻辑回归是一种强大的统计方法,它能建模出一个二项结果与一个(或多个)解释变量。它通过估算使用逻辑运算的概率,测量分类依赖变量和一个(或多个)独立的变量之间的关系,是累积的逻辑分布情况。
总的来说,逻辑回归可以用于以下场景:
4.朴素贝叶斯分类
朴素贝叶斯分类是一种十分简单的分类算法,方程P(A|B)是后验概率,P(B|A)是可能性,P(A)是类先验概率,而P(B)是预测先验概率。朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。它的现实使用例子有:
5.隐马尔科夫模型
可观察的马尔科夫决策过程是确定性的——一个给定的状态总是遵循另一个给定的状态。例如交通信号灯的模式。
相反,隐马尔科夫模型通过分析可观察的数据来计算隐藏状态的概率,然后通过分析隐藏状态来估计未来可能观察到的模式。一个例子是,通过分析高气压(或低气压)的概率来预测天气是晴天,雨天或多云的可能性。
6.随机森林
7.递归神经网络
8.长短期记忆(LSTM)
较旧的RNN可能是有损的(lossy),因为它们只能保存少量的旧信息。但新的长短期记忆(LSTM)和门控循环单元(gatedrecurrentunit,GRU)神经网络同时具有长期记忆和短期记忆。换句话说,这些较新的RNN具有更好的记忆控制,允许先前的值持续保存,或必要时为许多序列步骤重置,避免在步骤到步骤的传递时造成“梯度衰减”(gradientdecay)。LSTM和GRU网络通过记忆体组(memoryblocks)和被称为“门”(gates)的结构适当地pass或reset值来实现这种记忆控制。
9.卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理、药物发现等有出色表现。
卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更优的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网络,卷积神经网络需要估计的参数更少。