深度学习研究和应用发展,人工智能/机器学习/深度学习的关系人工智能

近些年人工智能、机器学习和深度学习的概念十分火热,但很多从业者却很难说清它们之间的关系,外行人更是雾里看花。在研究深度学习之前,先从三个概念的正本清源开始。概括来说,人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系如图1所示,即:人工智能>机器学习>深度学习。

图1:人工智能、机器学习和深度学习三者关系示意

2.机器学习

区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现和方法论两个维度进行剖析,帮助读者更加清晰地认识机器学习的来龙去脉。

2.1机器学习的实现

机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:

归纳:从具体案例中抽象一般规律,机器学习中的“训练”亦是如此。从一定数量的样本(已知模型输入X和模型输出Y)中,学习输出Y与输入X的关系(可以想象成是某种表达式)。

演绎:从一般规律推导出具体案例的结果,机器学习中的“预测”亦是如此。基于训练得到的Y与X之间的关系,如出现新的输入X,计算出输出Y。通常情况下,如果通过模型计算的输出和真实场景的输出一致,则说明模型是有效的。

2.2机器学习的方法论

机器学习的方法论和人类科研的过程有着异曲同工之妙,下面以“机器从牛顿第二定律实验中学习知识”为例,帮助读者更加深入理解机器学习(监督学习)的方法论本质,即在“机器思考”的过程中确定模型的三个关键要素:假设、评价、优化。

2.2.1案例:机器从牛顿第二定律实验中学习知识

牛顿第二定律

牛顿第二定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的,其常见表述:物体加速度的大小跟作用力成正比,跟物体的质量成反比,与物体质量的倒数成正比。牛顿第二运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。

在中学课本中,牛顿第二定律有两种实验设计方法:倾斜滑动法和水平拉线法,如图2所示。

图2:牛顿第二定律实验设计方法

相信很多读者都有摆弄滑轮和小木块做物理实验的青涩年代和美好回忆。通过多次实验数据,可以统计出如表1所示的不同作用力下的木块加速度。

表1:实验获取的大量数据样本和观测结果

2.2.2如何确定模型参数?

图3:确定模型参数示意图

2.2.3模型结构

模型假设、评价函数和优化算法是如何支撑机器学习流程的呢?如图4所示。

图4:机器学习流程

模型假设:世界上的可能关系千千万,漫无目标的试探Y~X之间的关系显然是十分低效的。因此假设空间先圈定了一个模型能够表达的关系可能,如蓝色圆圈所示。机器还会进一步在假设圈定的圆圈内寻找最优的Y~X关系,即确定参数w。

评价函数:寻找最优之前,我们需要先定义什么是最优,即评价一个Y~X关系的好坏的指标。通常衡量该关系是否能很好的拟合现有观测样本,将拟合的误差最小作为优化目标。

优化算法:设置了评价指标后,就可以在假设圈定的范围内,将使得评价指标最优(损失函数最小/最拟合已有观测样本)的Y~X关系找出来,这个寻找最优解的方法即为优化算法。最笨的优化算法即按照参数的可能,穷举每一个可能取值来计算损失函数,保留使得损失函数最小的参数作为最终结果。

从上述过程可以得出,机器学习的过程与牛顿第二定律的学习过程基本一致,都分为假设、评价和优化三个阶段:

上述方法论使用更规范化的表示如图5所示,未知目标函数f,以训练样本

为依据。从假设集合H中,通过学习算法A找到一个函数g。如果g能够最大程度的拟合训练样本D,那么可以认为函数g就接近于目标函数f。

图5:规范化表示

在此基础上,许多看起来完全不一样的问题都可以使用同样的框架进行学习,如科学定律、图像识别、机器翻译和自动问答等,它们的学习目标都是拟合一个“大公式f”,如图6所示。

图6:机器学习就是拟合一个“大公式”

3.深度学习

图7:深度学习的模型复杂度难以想象

图8:模拟人脑结构,针对各种任务设计不同的深度学习模型

3.1神经网络的基本概念

神经网络基本结构如图9所示。

图9:神经网络基本结构示意图

神经元:神经网络中每个节点称为神经元,由两部分组成:

加权和:将所有输入加权求和。

非线性变换(激活函数):加权和的结果经过一个非线性函数变换,让神经元计算具备非线性的能力。

多层连接:大量这样的节点按照不同的层次排布,形成多层的结构连接起来,即称为神经网络。

前向计算:从输入计算输出的过程,顺序从网络前至后。

计算图:以图形化的方式展现神经网络的计算逻辑又称为计算图,也可以将神经网络的计算图以公式的方式表达:

3.2深度学习的发展历程

神经网络思想的提出已经是70多年前的事情了,现今的神经网络和深度学习的设计理论是一步步趋于完善的。在这漫长的发展岁月中,一些取得关键突破的闪光时刻,值得深度学习爱好者们铭记,如图10所示。

图10:深度学习发展历程

1940年代:首次提出神经元的结构,但权重是不可学的。

50-60年代:提出权重学习理论,神经元结构趋于完善,开启了神经网络的第一个黄金时代。

1969年:提出异或问题(人们惊讶的发现神经网络模型连简单的异或问题也无法解决,对其的期望从云端跌落到谷底),神经网络模型进入了被束之高阁的黑暗时代。

1986年:新提出的多层神经网络解决了异或问题,但随着90年代后理论更完备并且实践效果更好的SVM等机器学习模型的兴起,神经网络并未得到重视。

2010年左右:深度学习进入真正兴起时期。随着神经网络模型改进的技术在语音和计算机视觉任务上大放异彩,也逐渐被证明在更多的任务,如自然语言处理以及海量数据的任务上更加有效。至此,神经网络模型重新焕发生机,并有了一个更加响亮的名字:深度学习。

大数据是神经网络发展的有效前提。神经网络和深度学习是非常强大的模型,需要足够量级的训练数据。时至今日,之所以很多传统机器学习算法和人工特征依然是足够有效的方案,原因在于很多场景下没有足够的标记数据来支撑深度学习。深度学习的能力特别像科学家阿基米德的豪言壮语:“给我一根足够长的杠杆,我能撬动地球!”。深度学习也可以发出类似的豪言:“给我足够多的数据,我能够学习任何复杂的关系”。但在现实中,足够长的杠杆与足够多的数据一样,往往只能是一种美好的愿景。直到近些年,各行业IT化程度提高,累积的数据量爆发式地增长,才使得应用深度学习模型成为可能。

3.3深度学习的研究和应用蓬勃发展

早在1998年,一些科学家就已经使用神经网络模型识别手写数字图像了。但深度学习在计算机视觉应用上的兴起,还是在2012年ImageNet比赛上,使用AlexNet做图像分类。如果比较下1998年和2012年的模型,会发现两者在网络结构上非常类似,仅在细节上有所优化。在这十四年间,计算性能的大幅提升和数据量的爆发式增长,促使模型完成了从“简单的数字识别”到“复杂的图像分类”的跨越。

另一方面,以深度学习为基础的人工智能技术,在升级改造众多的传统行业领域,存在极其广阔的应用场景。图12选自艾瑞咨询的研究报告,人工智能技术不仅可在众多行业中落地应用(广度),同时,在部分行业(如安防、遥感、互联网、金融、工业等)已经实现了市场化变现和高速增长(深度),为社会贡献了巨大的经济价值。

3.4深度学习改变了AI应用的研发模式

3.4.1实现了端到端的学习

深度学习改变了很多领域算法的实现模式。在深度学习兴起之前,很多领域建模的思路是投入大量精力做特征工程,将专家对某个领域的“人工理解”沉淀成特征表达,然后使用简单模型完成任务(如分类或回归)。而在数据充足的情况下,深度学习模型可以实现端到端的学习,即不需要专门做特征工程,将原始的特征输入模型中,模型可同时完成特征提取和分类任务,如图14所示。

图14:深度学习实现了端到端的学习

以计算机视觉任务为例,特征工程是诸多图像科学家基于人类对视觉理论的理解,设计出来的一系列提取特征的计算步骤,典型如SIFT特征。在2010年之前的计算机视觉领域,人们普遍使用SIFT一类特征+SVM一类的简单浅层模型完成建模任务。

说明:

3.4.2实现了深度学习框架标准化

除了应用广泛的特点外,深度学习还推动人工智能进入工业大生产阶段,算法的通用性导致标准化、自动化和模块化的框架产生,如图15所示。

图15:深度学习模型具有通用性特点

图16:深度学习框架大大减低了AI建模难度

4.人工智能的职业发展空间广阔

哲学家们告诉我们,做我们所喜欢的,然后成功就会随之而来。

——沃伦·巴菲特(全球著名的投资家)

相信本课程的读者中有很多在校筹备找工作的同学和职场中期望转型的工程师,大家普遍对人工智能的职业发展非常关心。下面就从经济回报的视角,分析下人工智能是不是一个有前途的职业。坦率的说,如巴菲特所言,选择一个自己喜欢的职业是真正的好职业。但对于多数普通人,经济回报也是职业选择的重要考虑因素。一个有高经济回报的职业一定是市场需求远远大于市场供给的职业,且市场需求要保持长期的增长,而市场供给难以中短期得到补充。

人工智能岗位的市场需求旺盛

互联网行业由于技术成熟周期短,应用落地的推进速度快,反而形成一条增长率更高(年增长率超过100%)但增长周期更短的曲线(电脑互联网时代10年,移动互联网时代10年)。当行业增长达到顶峰,对岗位的需求也会相应回落,如同2021年底的互联网行业的现状。

图17:人工智能岗位的市场供给对比

复合型人才成为市场刚需

在人工智能落地到千行万业的过程中,企业需求量最大、也最为迫切的是既懂行业知识和场景,又懂人工智能理论,还具备实践能力和经验的“复合型人才”。成为“复合型人才”不仅需要学习书本知识,还要大量进行产业实践,使得这种人才有成长深度,供给增长缓慢。从上述分析可见,当人工智能产业在未来几十年保持稳定的增长,而产业需要的“复合型人才”又难以大量供给的情况下,人工智能应用研发岗位会维持一个很好的经济回报。

人生天地之间,若白驹过隙,忽然而已,每个人都希望留下自己的足迹。为何要学习深度学习技术,以及如何通过这本书来学习呢?一方面,深度学习的应用前景广阔,是极好的发展方向和职业选择。另一方面,本书会使用国产的深度学习框架飞桨(PaddlePaddle)来编写实践案例,基于框架的编程让深度学习变得易学易用。

THE END
1.人工智能论文研究探索机器学习与深度学习的前沿应用在当今这个快速发展的时代,人工智能(AI)已经成为科技领域的一个热点话题。随着AI技术的不断进步,它在各个行业和领域中的应用日益广泛,从而激发了大量关于AI论文的研究。以下是对一些最新的人工智能论文研究进行的概述。 机器学习与数据分析 在过去几年中,机器学习技术得到了巨大的发展,这主要归功于大数据和云计算服务https://www.206sk8xl.cn/xing-ye-zi-xun/627985.html
2.机器学习:开启智能未来的钥匙腾讯云开发者社区在风控方面,银行通过大数据技术,监控账户的交易参数,分析持卡人的用户行为,从而判断该持卡人的信用级别。机器学习算法可以分析大量的交易数据,识别异常交易模式,及时发现欺诈行为,保护金融机构和客户的利益。 (四)自然语言处理、图像和视频处理、医疗保健、金融和商业、交通运输、农业等多领域应用 https://cloud.tencent.com/developer/article/2478495
3.物理学中的机器学习:从数据到发现的新范式机器学习(ML)是人工智能(AI)的一部分,致力于开发能够从数据中学习、无需明确编程便能做出预测或决策的算法。过去几十年里,机器学习已经成为多个领域的强大工具,改变了医疗、金融和零售等行业。在物理学中,机器学习的应用正在产生深远影响,它提高了数据分析的效率,推动了模式识别、预测建模,甚至新理论的发现https://baijiahao.baidu.com/s?id=1814759329987375988&wfr=spider&for=pc
4.机器学习算法的进步:从传统到现代机器学习(Machine Learning)是人工智能(Artificial Intelligence)的一个分支,它涉及到计算机程序能够自动学习和改进其表现的方法。机器学习的目标是使计算机能够自主地从数据中学习,而不是被人们明确编程。这种技术已经广泛应用于各个领域,例如图像识别、自然语言处理、推荐系统等。 https://blog.csdn.net/universsky2015/article/details/135809767
5.2020届计算机科学方向毕业设计(论文)阶段性汇报深度学习在视频分析中的应用 在本次汇报中,我将介绍毕设课题选定的视频分析具体任务:时序动作检测(Temporal Action Proposal)的相关内容,包括任务背景、最近研究成果、数据情况以及切入点等。我还将汇报过去一阶段的工作内容和下一阶段的工作计划。 范舟 基于强化学习的推荐与广告合并算法设计 https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
6.从零开始:机器学习的数学原理和算法实践本书从数学基础知识入手,通过前3章的介绍,帮助读者轻松复习机器学习涉及的数学知识;然后,通过第4~第13章的介绍,逐步讲解机器学习常见算法的相关知识,帮助读者快速入门机器学习;最后,通过第14章的综合实践,帮助读者回顾本书内容,进一步巩固所学知识。 本书适合对机器学习感兴趣但数学基础比较薄弱的读者学习,也适合作为https://www.epubit.com/bookDetails?id=UB77b8ad3a2522b
7.4种方法教你利用Python发现数据的规律python这样我们就可以发现数据的规律,例如哪些因素会影响购买决策等。需要注意的是,这只是一个简单的示例,实际应用中需要根据具体问题选择合适的机器学习算法和特征工程方法。 到此这篇关于4种方法教你利用Python发现数据的规律的文章就介绍到这了,更多相关Python数据规律内容请搜索脚本之家以前的文章或继续浏览下面的相关文章https://www.jb51.net/article/278111.htm
8.人工智能技术导论——机器学习与知识发现51CTO博客而分别基于这三个要素, 就可以对机器学习进行分类。例如,由于信息有语言符号型与数值数据型之分, 因此基于信息,机器学习可分为符号学习和数值学习; 而基于知识的形式,机器学习又可分为规则学习和函数学习等; 若基于发现的逻辑方法, 则机器学习可分为归纳学习、演绎学习和类比学习等等。 这样的分类也就是分别从“https://blog.51cto.com/u_15127700/4561036
9.Python机器学习基础教程如何衡量应用是否成功? 机器学习解决方案与我的研究或商业产品中的其他部分是如何相互影响的? 从更大的层面来看,机器学习算法和方法只是解决特定问题的过程中的一部分,一定要始终牢记整个项目的大局。许多人浪费大量时间构建复杂的机器学习解决方案,最终却发现没有解决正确的问题。 当深入研究机器学习的技术细节时(本书https://www.ituring.com.cn/book/tupubarticle/19667
10.机器学习及其应用通过脑部扫描发现肿瘤 自动分类新闻 论坛自动标记恶评 基于多性能指标来预测公司下一年的收入 对应用语音命令做出反应 … 机器学习算法基本类型 常见算法 按是否在人类监督下训练分类 监督学习 在监督学习中,用来训练算法的训练数据包含了答案,称为标签。 分类就是一个典型的监督学习,例如垃圾邮件过滤器一些回归算法也可https://www.jianshu.com/p/11d1323d028e
11.算法岗还是工程岗?关于职业选择的一点小思考职业发展以机器学习平台研发工程师-Data进行举例,首先你至少要精通或者熟悉一门编程语言(重点,不要贪杯),其次就是数据结构与算法要学好(这里所谓的学好并不是说你在某某平台刷了多少题,更重要的是要了解算法在生活中的应用场景,比如对于栈这种数据结构,大家在学校里可能就只知道栈可以解决括号匹配问题,但你是否知道你在日常https://ac.nowcoder.com/discuss/995242?type=9&order=0&page=1
12.数字化观察(100)华夏银行吴永飞等:数字金融领域小样本学习技术然而,产业数字金融风控所使用的数据要素情况不同于以往,特别是对公客户场景化、生态化细分后,数据样本量很小,难以满足风控建模的需要;而小样本学习目前在机器学习与数据挖掘领域仍属世界性难题。本文从小样本学习技术创新入手,深入探索数字经济时代下面向产业数字金融的小样本学习应用研究与实践。https://bank.hexun.com/2022-05-31/206058282.html
13.《常用算法之智能计算(三)》:机器学习计算从更广泛的意义上来看,机器学习是人工智能的一个子集。人工智能旨在使计算机更加智能化,而机器学习已经证明如何做到这一点。简而言之,机器学习是人工智能的应用,通过应用从数据中反复学习得到算法,可以改进计算机的功能,而无需进行明确的编程。 在给出机器学习计算各种算法之前,最好是先研究一下什么是机器学习和如何对http://www.kepu.net/blog/zhangjianzhong/201903/t20190327_475625.html