机器学习算法的发展及其在食品领域的应用

1、机器学习算法的发展及其在食品领域的应用朱尹摘要:简介了机器学习,叙述了机器学习的发展,叙述了机器学习算法在食品领域的应用。关键词:机器学习,人工神经网络,食品在机器学习一书中,机器学习(MachineLearning,ML)的定义为:关于某类任务T和性能度量P,如果一个计算机程序能在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E中学习。通俗来说,机器学习是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。下面

3、人类的概念学习过程,并采用逻辑结构或图结构作为机器内部描述。本阶段的代表性工作有温斯顿(Winston)的结构学习系统和海斯罗思(Hayes-Roth)等的基本逻辑的归纳学习系统。1.3第三阶段:复兴时期第三阶段从20世纪70年代中叶到80年代中叶,称为复兴时期。在此期间,人们从学习单个概念扩展到学习多个概念,探索不同的学习策略和方法,且在本阶段已开始把学习系统与各种应用结合起来,并取得很大的成功,促进机器学习的发展。1980年,在美国的卡内基梅隆(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。机器学习的最新阶段始于1986年。1.4新时期机器学习进入新阶段的重要

4、表现在下列诸方面:(1)机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。(2)结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。(3)机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。(4)各种学习方法的应用范围不断扩大,一部分已形成商品。归纳

5、学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。(5)与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。2.机器学习算法在食品领域的应用机器学习的目标就是在一定的网络结构基础上,构建数学模型,选择相应的学习方式和训练方法,学习输入数据的数据结构和内在模式,不断调整网络参数,通过数学工具求解模型最优化的预测反馈,提高泛化能力、防止过拟合。机

6、器学习算法主要是指通过数学及统计方法求解最优化问题的步骤和过程,在食品领域具有广泛应用,下面以机器人工神经网络举例介绍。2.1人工神经网络简介人工神经网络(ArtificialNeuralNetwork,即ANN)是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。它从信息处理角度对人脑神经元网络进行抽象,建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种

7、特定的输出函数,称为激励函数(activationfunction)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。常用的神经网络有BP、RBF、SOM、Hopfield等等,其功能不经相同2.2人工神经网络在食品领域的应用2.2.1水果分级和分类杨宝华等人利用BP神经网络研究了西瓜种仁质量的预测。根据园艺试验田多年跟踪测量西瓜生长指标,随机抽取每年的部分数据来预测种仁质量,输出层节点代表种仁质量。其

8、设计的神经网络的预测模型确定输入层为4个神经元,计算隐层神经元数确定为4,输出因子为1个,所以确定输出层为1个神经元。设定最大的迭代次数为100次,系统全局误差小于0.001。经过6次训练后,网络的目标误差达到要求,用训练好的网络预测输入向量,仿真输出结果。将预测值与待预测目标值比较,计算相对误差,结果相对误差在20%上下波动。考虑到样本的数据较少,还有数据测量的偏差,这个误差是可以接受的。BP网络经有效训练后应用于西瓜仁质量预测,具有较高的预测精度和良好的泛化能力。Kondo等人通过机器视觉系统采集“Izokan”甜橙图像,以图像红色分量R与绿色分量G的比率、果形指数、质量和果面粗糙度为输

THE END
1.人工智能论文研究探索机器学习与深度学习的前沿应用在当今这个快速发展的时代,人工智能(AI)已经成为科技领域的一个热点话题。随着AI技术的不断进步,它在各个行业和领域中的应用日益广泛,从而激发了大量关于AI论文的研究。以下是对一些最新的人工智能论文研究进行的概述。 机器学习与数据分析 在过去几年中,机器学习技术得到了巨大的发展,这主要归功于大数据和云计算服务https://www.206sk8xl.cn/xing-ye-zi-xun/627985.html
2.机器学习:开启智能未来的钥匙腾讯云开发者社区在风控方面,银行通过大数据技术,监控账户的交易参数,分析持卡人的用户行为,从而判断该持卡人的信用级别。机器学习算法可以分析大量的交易数据,识别异常交易模式,及时发现欺诈行为,保护金融机构和客户的利益。 (四)自然语言处理、图像和视频处理、医疗保健、金融和商业、交通运输、农业等多领域应用 https://cloud.tencent.com/developer/article/2478495
3.物理学中的机器学习:从数据到发现的新范式机器学习(ML)是人工智能(AI)的一部分,致力于开发能够从数据中学习、无需明确编程便能做出预测或决策的算法。过去几十年里,机器学习已经成为多个领域的强大工具,改变了医疗、金融和零售等行业。在物理学中,机器学习的应用正在产生深远影响,它提高了数据分析的效率,推动了模式识别、预测建模,甚至新理论的发现https://baijiahao.baidu.com/s?id=1814759329987375988&wfr=spider&for=pc
4.机器学习算法的进步:从传统到现代机器学习(Machine Learning)是人工智能(Artificial Intelligence)的一个分支,它涉及到计算机程序能够自动学习和改进其表现的方法。机器学习的目标是使计算机能够自主地从数据中学习,而不是被人们明确编程。这种技术已经广泛应用于各个领域,例如图像识别、自然语言处理、推荐系统等。 https://blog.csdn.net/universsky2015/article/details/135809767
5.2020届计算机科学方向毕业设计(论文)阶段性汇报深度学习在视频分析中的应用 在本次汇报中,我将介绍毕设课题选定的视频分析具体任务:时序动作检测(Temporal Action Proposal)的相关内容,包括任务背景、最近研究成果、数据情况以及切入点等。我还将汇报过去一阶段的工作内容和下一阶段的工作计划。 范舟 基于强化学习的推荐与广告合并算法设计 https://zhiyuan.sjtu.edu.cn/html/zhiyuan/announcement_view.php?id=3709
6.从零开始:机器学习的数学原理和算法实践本书从数学基础知识入手,通过前3章的介绍,帮助读者轻松复习机器学习涉及的数学知识;然后,通过第4~第13章的介绍,逐步讲解机器学习常见算法的相关知识,帮助读者快速入门机器学习;最后,通过第14章的综合实践,帮助读者回顾本书内容,进一步巩固所学知识。 本书适合对机器学习感兴趣但数学基础比较薄弱的读者学习,也适合作为https://www.epubit.com/bookDetails?id=UB77b8ad3a2522b
7.4种方法教你利用Python发现数据的规律python这样我们就可以发现数据的规律,例如哪些因素会影响购买决策等。需要注意的是,这只是一个简单的示例,实际应用中需要根据具体问题选择合适的机器学习算法和特征工程方法。 到此这篇关于4种方法教你利用Python发现数据的规律的文章就介绍到这了,更多相关Python数据规律内容请搜索脚本之家以前的文章或继续浏览下面的相关文章https://www.jb51.net/article/278111.htm
8.人工智能技术导论——机器学习与知识发现51CTO博客而分别基于这三个要素, 就可以对机器学习进行分类。例如,由于信息有语言符号型与数值数据型之分, 因此基于信息,机器学习可分为符号学习和数值学习; 而基于知识的形式,机器学习又可分为规则学习和函数学习等; 若基于发现的逻辑方法, 则机器学习可分为归纳学习、演绎学习和类比学习等等。 这样的分类也就是分别从“https://blog.51cto.com/u_15127700/4561036
9.Python机器学习基础教程如何衡量应用是否成功? 机器学习解决方案与我的研究或商业产品中的其他部分是如何相互影响的? 从更大的层面来看,机器学习算法和方法只是解决特定问题的过程中的一部分,一定要始终牢记整个项目的大局。许多人浪费大量时间构建复杂的机器学习解决方案,最终却发现没有解决正确的问题。 当深入研究机器学习的技术细节时(本书https://www.ituring.com.cn/book/tupubarticle/19667
10.机器学习及其应用通过脑部扫描发现肿瘤 自动分类新闻 论坛自动标记恶评 基于多性能指标来预测公司下一年的收入 对应用语音命令做出反应 … 机器学习算法基本类型 常见算法 按是否在人类监督下训练分类 监督学习 在监督学习中,用来训练算法的训练数据包含了答案,称为标签。 分类就是一个典型的监督学习,例如垃圾邮件过滤器一些回归算法也可https://www.jianshu.com/p/11d1323d028e
11.算法岗还是工程岗?关于职业选择的一点小思考职业发展以机器学习平台研发工程师-Data进行举例,首先你至少要精通或者熟悉一门编程语言(重点,不要贪杯),其次就是数据结构与算法要学好(这里所谓的学好并不是说你在某某平台刷了多少题,更重要的是要了解算法在生活中的应用场景,比如对于栈这种数据结构,大家在学校里可能就只知道栈可以解决括号匹配问题,但你是否知道你在日常https://ac.nowcoder.com/discuss/995242?type=9&order=0&page=1
12.数字化观察(100)华夏银行吴永飞等:数字金融领域小样本学习技术然而,产业数字金融风控所使用的数据要素情况不同于以往,特别是对公客户场景化、生态化细分后,数据样本量很小,难以满足风控建模的需要;而小样本学习目前在机器学习与数据挖掘领域仍属世界性难题。本文从小样本学习技术创新入手,深入探索数字经济时代下面向产业数字金融的小样本学习应用研究与实践。https://bank.hexun.com/2022-05-31/206058282.html
13.《常用算法之智能计算(三)》:机器学习计算从更广泛的意义上来看,机器学习是人工智能的一个子集。人工智能旨在使计算机更加智能化,而机器学习已经证明如何做到这一点。简而言之,机器学习是人工智能的应用,通过应用从数据中反复学习得到算法,可以改进计算机的功能,而无需进行明确的编程。 在给出机器学习计算各种算法之前,最好是先研究一下什么是机器学习和如何对http://www.kepu.net/blog/zhangjianzhong/201903/t20190327_475625.html