生成式AI:机器学习与深度学习的完美结合

深入理解生成式AI技术原理:初识生成式AI

在生成式AI中,最常见的深度学习模型包括自编码器、生成对抗网络(GAN)、变分自编码器(VAE)等。这些模型都能够通过学习和模拟数据分布,生成出全新的、真实的、有用的数据。

其中,生成对抗网络(GAN)是最为著名的生成式AI模型之一。GAN由两个神经网络组成:一个是生成器,另一个是判别器。生成器的任务是生成看起来真实的假数据,而判别器的任务是区分真实数据和假数据。在训练过程中,两个网络不断进行对抗和优化,最终生成器能够生成足以以假乱真的数据。

除了GAN,自编码器和变分自编码器也是常用的生成式AI模型。自编码器通过无监督学习方式学习数据分布,并利用编码器和解码器对数据进行编码和解码,最终实现数据生成。而变分自编码器则通过引入隐变量和两个神经网络,实现对数据分布的近似和对数据的生成。

除了上述常见的模型,生成式AI还包括许多其他模型和技术,例如扩散模型、隐空间采样等。这些技术和模型都能够通过对数据分布的学习和模拟,生成出全新的、真实的、有用的数据。

总的来说,生成式AI技术是一种基于机器学习和深度学习算法的数据生成技术。它能够从大量数据中学习和提取特征,并利用这些特征生成新的数据。虽然这些技术和模型在理论上已经非常成熟,但在实际应用中还需要考虑许多问题,例如数据的标注、模型的训练、模型的评估等。只有解决了这些问题,才能够实现生成式AI技术的广泛应用。

全国首批获得可信云服务认证对象存储服务:N002002云数据库服务:N003002

THE END
1.生成式AI:创造性智能的新纪元什么是生成式AI? 生成式AI是一种利用机器学习算法,特别是深度学习技术,来生成新的数据样本的人工智能。这些数据样本在统计上与训练数据相似,但又是独一无二的。这种技术的核心在于能够捕捉到数据的分布特征,并在此基础上创造出新的实例。 主要技术 生成对抗网络(GANs):由生成器和判别器组成,生成器产生数据,判别器https://blog.csdn.net/qq_56438516/article/details/141832237
2.生成式深度学习神经网络深度神经网络算法生成式深度学习神经网络 深度神经网络算法 Writed by changfei_lovelife~ 目录 1.卷积神经网络 2.深层卷积网络实例探究 第一部分 卷积神经网络 1.边缘检测器 原理:利用过滤器,与原图矩阵进行卷积计算,可实现垂直/水平边缘检测。 卷积运算:逐元素相乘,然后相加https://blog.51cto.com/u_13259/10358004
3.4机器学习算法面试八股【4】机器学习算法面试八股 51随机森林RF 通过对训练数据样本以及属性进行有放回的抽样(针对某一个属性随机选择样本)这里有两种,一种是每次都是有放回的采样,有些样本是重复的,组成和原始数据集样本个数一样的数据集;另外一种是不放回的抽样,抽取出大约60%的训练信息。由此生成一颗CART树,剩下的样本信息作为袋https://www.nowcoder.com/discuss/509759767431098368
4.python机器学习笔记:深入学习决策树算法原理1. 决策树学习算法主要由三部分构成 1.1 特征选择 特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。 1.2 决策树生成 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。树结构来https://www.flyai.com/article/622
5.博弈环境下的深度强化学习和传统的深度强化学习不同博弈环境下的深度学习需要通过与其他智能体或环境进行交互来生成数据。相比之下,传统的深度学习通常使用已标注的静态数据集进行训练。 2、增强学习算法 博弈环境下的深度学习通常使用增强学习算法来训练智能体。增强学习是一种通过与环境交互学习最优策略的方法。传统的深度学习通常使用监督学习算法。 https://wap.sciencenet.cn/home.php?mod=space&uid=40841&do=blog&id=1418525
6.基于机器学习的深基坑三维土层重建提出一种基于机器学习的土层重建方法,首先设计土层生成算法来进行土层训练数据集的数据增强。然后根据钻孔信息数据结构设计了预测模型特征编码方法,作为预测模型的标准输入,通过搭建卷积神经网络模型,对土层结构进行特征提取,形成土层预测模型。随后,利用预测模型对待预测地块中的离散格点进行土层属性预测,获得土层体数据。最后http://qks.cqu.edu.cn/html/cqdxzrcn/2021/5/20210515.htm
7.《自然》封面:人工智能掀起材料革命,将颠覆人类科研方式能见度但有一批材料科学家转换思路,使用计算机模型和机器学习算法生成海量假想的材料,建立数据库,从中筛选出值得合成的材料,再通过检索这些材料可能拥有的性质进行具体应用测试,比如将这种材料用作导体表现如何、用作绝缘体性能又如何、这种材料是否具有磁性、那种材料的抗压力是多少。https://www.thepaper.cn/newsDetail_forward_1466136
8.强化学习GAIL生成对抗模仿学习详解《Generativeadversarial( c , π ) (c,\pi) (c,π)为一个鞍点。 可得,不同的正则化函数 ψ \psi ψ构成不同的模仿学习算法,可以直接求解上式得到 ( c , π ) (c,\pi) (c,π)。 在本文中将会主要介绍三种不同的正则化函数:恒定正则化函数,示性正则化函数,生成对抗正则化函数(GA) https://cloud.tencent.com/developer/article/2152022
9.交换机如何实现自学习算法帧交换表的实现是通过自学习算法,自学习算法是在网络中主机间不断的通信中逐渐建立起来的。 自学习算法最重要的两点 1)主机发送出帧后交换机便将该MAC地址以及接口登记; 2)一个接口成功接收到帧,变将该接口和MAC地址登记 冗余环路可以提高以太网的可靠性,但是会造成网络环路,可以通过创建最小生成树的创建来避免网https://www.jianshu.com/p/ed03cf24b9b1