基于深度学习算法的智能态势理解方法人工智能

文给出了一种基于深度学习算法的态势理解方法,分析了该智能算法在态势理解中的应用方本式;提出了基于知识发现方法的态势理解技术路径;介绍了基于大数据、智能算法的态势理解知识发现的流程。最后,以战术层级作战意图识别问题为例,对比分析了传统作战意图识别方法和基于深度学习算法的作战意图识别方法;以合成部队坦克分队战术意图识别问题为例,探讨了深度学习长短时记忆(LSTM)网络算法在态势理解作战意图识别中的应用,试验结果证明,深度学习LSTM网络算法对作战意图识别问题具有较高的识别准确率和较好的收敛函数值,能有效提高复杂战场环境下作战指挥态势理解效率。

应用方法

图1智能算法在态势理解中应用

1.1知识发现方法池

基于智能算法的态势理解方法主要通过构建知识发现方法池实现,包括关联规则发现方法、粗糙集方法、深度学习算法以及数据库方法。根据情境分析任务的不同需要和数据的特点,选择适当方法或综合采用不同方法。还可根据实际问题对现有的知识发现方法进行改进,使改进后的方法更有利于应对新环境和新问题。利用知识发现技术,挖掘隐含的、有用的、未被发现的信息和知识(如规则、模型和约束等),并提供给决策者。基于知识发现方法池的智能态势理解流程如图2所示。

图2基于知识发现方法池的智能态势理解流程

知识发现方法池主要技术方法对比如表1所示。不同的知识发现方法具有不同指标特征,导致不同知识发现方法的应用领域也不同。知识发现的输出是规则、模式、模型和约束等知识元素。规则可划分为关联规则、分类规则以及聚类规则;模式可分为频繁模式、子图模式和序列模式。同样,这些知识发现结果也有不同的特点和用途。

表1知识发现方法池主要技术方法对比

1.2知识发现流程

图3态势理解知识发现流程

2)态势数据处理。首先,通过对态势数据的整理、整合、变换和归约等方式对态势数据进行预处理,处理内容包括噪声数据去除、数据不完整性以及数据不一致性处理等;其次,对数据采取平滑和聚集等规范化处理,这是数据压缩和转换的必要步骤。

3)态势数据挖掘。数据挖掘是从战场态势信息数据中,通过智能算法搜索隐含的高价值信息的过程,是态势理解知识发现的重要环节。通过对数据分类、聚类、预测和关联的分析和研究,将原始数据从基础信息抽象为符合用户需求的高级知识,实现从大量、不完全和模糊的数据中发现战场态势知识。

5)态势知识呈现。通过研究、提取和可视化最有价值的战场态势知识,把态势理解知识以知识图谱、虚拟现实和增强现实等易于用户理解的方式传递给用户。其中,知识图谱是一种基于图的真实世界语义描述模型,它为态势理解知识的呈现提供了一种新技术。

应用实例

2.1基于模板匹配的作战意图识别

Gw.Hopple等的战场情报信息准备系统和David.F.Noble的基于规划模板的海战意图识别系统都通过模板匹配来实现敌方作战意图识别。

图4模板匹配器结构

2.2基于深度学习算法的作战意图识别

与传统方法相比,基于深度学习算法的作战意图识别方法在战场态势理解

图5基于深度学习算法的作战意图识别模型

2.3基于深度学习算法的作战意图识别仿真试验

试验以合成部队坦克分队与敌遭遇战斗为背景,以作战筹划过程中态势理解阶段对敌方坦克分队战术行动意图识别为研究对象。在智能作战试验平台上运用深度学习算法,采用作战仿真训练数据进行作战意图识别试验。智能作战试验平台是集成了人工智能算法的综合试验平台。

2.3.1模型设计与实现

图6基于深度学习算法作战意图识别模型应用

表2长短时记忆网络算法参数

2.3.2试验结果

在试验过程中,将坦克分队7种战术行动意图共2000个样本数据随机分为80%训练集和20%测试集。图7显示了LSTM网络算法模型在上述7种战术行动意图数据集上的综合训练与测试结果。如图7所示,对敌7种战术行动意图识别准确率随着训练次数的增加而增加,在训练1200步以后趋于稳定接近于100%;随着训练次数的增加,损失函数的值逐渐减小,1200步后趋于0。该结果符合一般深度学习算法模型的训练过程。可以看出,LSTM网络算法对于敌方坦克分队战术行动意图识别问题具有良好的识别准确率和收敛性。

THE END
1.生成式AI:创造性智能的新纪元什么是生成式AI? 生成式AI是一种利用机器学习算法,特别是深度学习技术,来生成新的数据样本的人工智能。这些数据样本在统计上与训练数据相似,但又是独一无二的。这种技术的核心在于能够捕捉到数据的分布特征,并在此基础上创造出新的实例。 主要技术 生成对抗网络(GANs):由生成器和判别器组成,生成器产生数据,判别器https://blog.csdn.net/qq_56438516/article/details/141832237
2.生成式深度学习神经网络深度神经网络算法生成式深度学习神经网络 深度神经网络算法 Writed by changfei_lovelife~ 目录 1.卷积神经网络 2.深层卷积网络实例探究 第一部分 卷积神经网络 1.边缘检测器 原理:利用过滤器,与原图矩阵进行卷积计算,可实现垂直/水平边缘检测。 卷积运算:逐元素相乘,然后相加https://blog.51cto.com/u_13259/10358004
3.4机器学习算法面试八股【4】机器学习算法面试八股 51随机森林RF 通过对训练数据样本以及属性进行有放回的抽样(针对某一个属性随机选择样本)这里有两种,一种是每次都是有放回的采样,有些样本是重复的,组成和原始数据集样本个数一样的数据集;另外一种是不放回的抽样,抽取出大约60%的训练信息。由此生成一颗CART树,剩下的样本信息作为袋https://www.nowcoder.com/discuss/509759767431098368
4.python机器学习笔记:深入学习决策树算法原理1. 决策树学习算法主要由三部分构成 1.1 特征选择 特征选择是指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。 1.2 决策树生成 根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树停止生长。树结构来https://www.flyai.com/article/622
5.博弈环境下的深度强化学习和传统的深度强化学习不同博弈环境下的深度学习需要通过与其他智能体或环境进行交互来生成数据。相比之下,传统的深度学习通常使用已标注的静态数据集进行训练。 2、增强学习算法 博弈环境下的深度学习通常使用增强学习算法来训练智能体。增强学习是一种通过与环境交互学习最优策略的方法。传统的深度学习通常使用监督学习算法。 https://wap.sciencenet.cn/home.php?mod=space&uid=40841&do=blog&id=1418525
6.基于机器学习的深基坑三维土层重建提出一种基于机器学习的土层重建方法,首先设计土层生成算法来进行土层训练数据集的数据增强。然后根据钻孔信息数据结构设计了预测模型特征编码方法,作为预测模型的标准输入,通过搭建卷积神经网络模型,对土层结构进行特征提取,形成土层预测模型。随后,利用预测模型对待预测地块中的离散格点进行土层属性预测,获得土层体数据。最后http://qks.cqu.edu.cn/html/cqdxzrcn/2021/5/20210515.htm
7.《自然》封面:人工智能掀起材料革命,将颠覆人类科研方式能见度但有一批材料科学家转换思路,使用计算机模型和机器学习算法生成海量假想的材料,建立数据库,从中筛选出值得合成的材料,再通过检索这些材料可能拥有的性质进行具体应用测试,比如将这种材料用作导体表现如何、用作绝缘体性能又如何、这种材料是否具有磁性、那种材料的抗压力是多少。https://www.thepaper.cn/newsDetail_forward_1466136
8.强化学习GAIL生成对抗模仿学习详解《Generativeadversarial( c , π ) (c,\pi) (c,π)为一个鞍点。 可得,不同的正则化函数 ψ \psi ψ构成不同的模仿学习算法,可以直接求解上式得到 ( c , π ) (c,\pi) (c,π)。 在本文中将会主要介绍三种不同的正则化函数:恒定正则化函数,示性正则化函数,生成对抗正则化函数(GA) https://cloud.tencent.com/developer/article/2152022
9.交换机如何实现自学习算法帧交换表的实现是通过自学习算法,自学习算法是在网络中主机间不断的通信中逐渐建立起来的。 自学习算法最重要的两点 1)主机发送出帧后交换机便将该MAC地址以及接口登记; 2)一个接口成功接收到帧,变将该接口和MAC地址登记 冗余环路可以提高以太网的可靠性,但是会造成网络环路,可以通过创建最小生成树的创建来避免网https://www.jianshu.com/p/ed03cf24b9b1