腾讯教育举办材料多尺度计算研讨会11位材料科学家高校学者共话材料科学云计算前景

腾讯杰出科学家、腾讯量子实验室负责人张胜誉,龙讯旷腾CEO吕海峰,香港城市大学讲座教授张瑞勤,北京航空航天大学物理学院院长、教授吕广宏,中国科学院半导体研究所首席科学家汪林望教授,清华大学物理系长聘教授、日本理化学研究所兼职研究员徐勇,清华大学深圳国际研究生院副教授、博士生导师邹小龙,浙江大学教授谢昌谕,中国科学院深圳先进技术研究院研究员赵海涛,腾讯量子实验室专家研究员郝少刚以及NVIDIA解决方案与架构高级技术经理张瑞华等出席了本次线上研讨会。

腾讯杰出科学家、腾讯量子实验室负责人张胜誉在致辞中指出,材料科学是国家产业升级的关键支撑,腾讯近年来不断加大在硬核科技研究中的投入,希望通过腾讯云的高性能计算资源和腾讯量子实验室开发的TEFS材料研究平台,助力材料计算领域提升科研效率,加速成果输出。

龙讯旷腾CEO吕海峰表示,传统计算材料学与人工智能、云计算等新技术的融合,使得材料计算模拟正向着更高的精度、更大尺度乃至更大规模的方向快速推进。龙讯旷腾基于教育科研界、工业界的前沿需求,打造出一批好用的软件工具和服务,助力提高材料研发效率,缩短研发周期,降低研发成本。

张瑞勤:机器学习辅助钙钛矿材料设计

在材料领域,传统的新材料开发通常是基于试错的方式进行,成本昂贵而且耗时。随着云计算技术带来的计算能力提升,对材料工作者从事分子和材料研究、设计工作都带来很大便利。

吕广宏:金属材料中子辐照计算模拟平台构建

计算模拟对材料设计的助力不仅体现在一般的工业制造层面,在核材料等尖端领域也得到应用。中子辐照会导致材料结构性能发生较大变化,但开展辐照损伤实验研究面临着运行成本高、真实运行环境难找、替代试验偏差大等诸多问题。

北京航空航天大学物理学院院长、教授吕广宏介绍了通过中子辐照模拟平台来计算模拟反应堆中子的辐照损伤和辐照效应的实践案例。在金属材料中子辐照模拟平台上,研究人员可以模拟中子以不同能量、角度入射金属材料后的过程,通过辐照初级损伤结构数据库和辐照缺陷性质数据库,对整个过程进行动力学演化计算,从而对中子辐照下材料缺陷行为和力热性能做出预测,最终的计算结果和实验结果符合度非常高。

汪林望:高性能计算、大数据、人工智能与材料创新

“在材料创新模式上,不断试错的爱迪生式方法已经不再适用。”中国科学院半导体研究所首席科学家汪林望教授表示,不同于以往通过理性推导,从底层一步步到上层的方式,随着AIforscience(科学智能)时代的到来,我们可以用统计的方法来解决同样的问题。

而对于机器学习在材料研发上的应用,汪林望认为主要体现在两个方向:一是拿来做数据挖掘,在海量数据中发现分子结构、属性之间的相互关系;第二是做力场的开发,通过拟合第一性原理计算产生的大量数据,得到一个力场模型,接下来利用机器学习不断迭代、反复学习映射,使之变得更好。

郝少刚:基于消息传递的异质图神经网络

张瑞华:NVIDIAGPU加速材料科学研究

利用计算机进行材料设计和发现,已经成为材料科学研究的必要手段,而这背后离不开GPU计算平台的支持。会上,NVIDIA解决方案与架构高级技术经理张瑞华介绍了NVIDIA如何从计算平台的角度加速、支持新材料研究工作。

张瑞华表示,NVIDIAGPU助力材料科学研究主要有三个应用场景,第一个是HPC(高性能计算),第二是用AI的方法进行新材料的发现,第三是HPC与AI的融合,实现更大尺度的模拟。此外,张瑞华还详细介绍了VASP、QE、LAMMPS等软件在NVIDIAGPU计算平台上的支持情况、扩展能力和加速效果,以及NVIDIA提供的一系列工具资源包,助力材料科学研究的开展。

专家评议:机器学习在材料领域应用会常态存在或昙花一现?

随着机器学习在材料发现与设计上的应用越来越广泛,这一新技术模式究竟会是未来的行业常态还是会很快被取代现场,来自清华大学、浙江大学、中科院的四位专家对此展开讨论。

浙江大学教授谢昌谕表示,机器学习已经是一个正在进行时,行业目前对机器学习的方法很认可。但它更令人期待的是未来在深度学习层面的应用,能够在底层上跟AI进行更好的融合,带来可解释性更好、泛化能力更强的模型。

清华大学物理系长聘教授、日本理化学研究所兼职研究员徐勇十分看好机器学习的前景。他认为,把第一性原理作为数据产生器,然后通过数据来训练神经网络,最后取代底层计算软件,能极大地提升研究效率,带来的影响将是革命性的。

清华大学深圳国际研究生院副教授、博士生导师邹小龙表示,材料领域讲究极端精细的制造,对于层状材料的设计、相互作用的调控等,往往要精细到原子级,而传统的方法很难实现,机器学习会成为解决这些问题的重要手段。

此外,专家们还围绕机器学习在材料科学领域的应用前景展开了更多深入的探讨。

THE END
1.如何在智能信息化时代加速材料科学的研发与创新如图4所示,材料科学中常用的机器学习算法可以分为四类:概率估计、回归、聚类和分类。具体而言,概率估计算法主要用于新材料发现,而回归、聚类和分类算法用于宏观和微观层面的材料特性预测。此外,机器学习方法通常与各种智能优化算法相结合,例如GA,SAA或PSO算法,主要用于优化模型参数。此外,这些优化算法也可用于执行其他困难https://cloud.tencent.com/developer/news/333018
2.机器学习材料性能预测与材料基因工程应用实战然而,机器学习在材料科学中的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。以下内容可作为学习的参考 入门阶段从机器学习以及机器学习在材料领域的应用基本概念开始讲授,让大家明确机器学习方法的适用性和优势,以及有针对性的对python语言基础进行系统学习,为之后构建相应算法模型框架打https://blog.csdn.net/y2715163545/article/details/130487823
3.科学网—jyx123321的博客机器学习在材料科学中的进展研讨会的报告 2024-08-21 昨天我们学院年轻有为的 LONG T 老师组织了机器学习在材料科学中的进展研讨会,我受邀做了一个报告《面向复杂电路结构可靠性仿真的基于 Transformer (4111)次阅读|(6)个评论 生成式人工智能在集成电路行业中深入应用的期望 2024-08-13 在8 月 11 日写https://blog.sciencenet.cn/home.php?mod=space&uid=99553
4.机器学习在材料科学中应用作为一个目前专业为材料学科,但却独自学习机器学习的小菜鸡,最理想的莫过于将俩者结合,但是这只是个想法,感觉理论上可以实现,要达到这样的目的还需要很艰难的一段路要走,但不妨先把目前的相关的知识整理下来。 我们的日常生活受到材料的影响,从数十亿分之一秒的硅芯片数据存储到汽车发动机的新合金,再到可再生能源https://www.jianshu.com/p/b3b3546446ab
5.材料科学加人工智能是下一个可能发生的类似Alphafold的重大变革在传统的方法中,新材料是通过实验、理论或计算来发现的(也被称为第一、第二和第三范式,由左侧面板上方的三个图标象征)。在数据驱动的材料科学的第四范式中,可用的数据被收集在数据基础设施中,机器学习方法发现新材料。这些方法导致了借用机器学习模型,使人们能够纯粹根据过去的数据进行快速预测,而不是通过直接实验或https://www.yicai.com/news/101121158.html
6.机器学习技术在材料科学领域中的应用进展维普期刊官网摘要 材料是国民经济的基础,新材料的发现是推动现代科学发展与技术革新的源动力之一,传统的实验“试错型”研究方法具有成本高、周期长和存在偶然性等特点,难以满足现代材料的研究需求。近些年,随着人工智能和数据驱动技术的飞速发展,机器展开更多 Materials are the foundation of the national economy,the discovery https://qikan.cqvip.com/Qikan/Article/Detail?id=7105430528
7.2020年中国科学技术大学材料科学与工程学院(金属研究所)招生专业中国科学院金属研究所(以下简称金属所)成立于1953年,是新中国成立后中国科学院新创建的首批研究所之一,创建者是我国著名的物理冶金学家李薰先生。现任所长左良教授。经老一辈科学家和几代人的不懈努力,金属所已经发展成为我国享誉海内外的材料科学与工程领域重要的研究基地,也是培养材料科学与工程高级人才的重要基地。 https://yz.kaoyan.com/ustc/zhuanye/5dad13ceab77c.html
8.前沿报告机器学习在化学和材料科学中的应用获取英文PDF报告请在本公众号回复关键词"机器学习物理科学"。 Ⅵ 化学和材料科学 机器学习方法已被应用于预测分子和固体的能量和性质,并且这种应用的受欢迎程度急剧增加。原子相互作用的量子性质使能量评估的计算量很大,因此,当需要进行许多此类计算时,机器方法尤其有用。近年来,ML 在化学和材料研究中的不断扩展的应用https://blog.51cto.com/u_15622928/5809397
9.智算芯闻材料科学迈向AI4Materials的关键因素:密度泛函理论图3 材料科学中机器学习的一般流程 图片来源于文献[20] 3.1、材料工程特征 把人工智能与材料科学结合起来的第一步是构建材料描述符,通常也叫做材料指纹,这个过程也叫做材料的特征工程[21]。通常一个好的分子或晶体结构描述符需要满足唯一性、平移不变性、旋转不变性、排列不变性等。材料结构的描述符通常可分为两个https://www.metax-tech.com/ndetail/12502.html