数据挖掘(DataMining,DM)是从大量数据(包括结构化数据、半结构化数据和非结构化数据)中挖掘出隐含的、未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程;是利用各种分析工具在海量数据中发现模型和数据之间关系的过程。也就是从数据中获取智能的过程。通过数据挖掘分析,能帮助企业发现业务的趋势,揭示已知的事实,预测未来的结果。
2服装连锁企业物流决策支持系统
决策支持系统(DSS)是管理信息系统(MIS)向更高一级发展而产生的先进信息管理系统,辅助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策的计算机系统。简而言之,DSS就是在数据仓库的支撑下,通过数据挖掘技术建立模型,从而帮助决策者进行决策。从功能上来看,MIS系统主要解决结构化问题,而DSS主要解决半结构化和非结构化问题;MIS完成的是例行业务活动中的信息处理问题,而DSS完成的是辅助支持决策活动,通过人机交互提供决策所需的信息。因此,MIS的目标是高效率,而DSS的目标则是有效性。服装连锁企业物流决策支持系统是服装连锁企业决策支持系统的一个子系统,对解决服装连锁企业物流日常业务中遇到的半结构化问题、增强决策者经验与信心、提高企业物流信息化水平、改进工作方式等都有着积极作用。
3传统服装连锁企业物流管理决策支持系统
3.1数据仓库
图2数据仓库系统结构图
3.2模型库和方法库
3.3知识库
由于知识库中某些陈述性或者过程性的知识已经被常识化,因而某些具体的决策支持系统往往忽略了知识库。但从整体来看,因服装连锁企业物流决策支持系统的知识库主要起辅助和支撑作用,因而必须深化认识知识库的内容。知识库通过人机交互,将专业领域与数据挖掘联系起来,起到桥梁作用,它包括大量各领域的信息、使用规则及与实际业务的关系过程。与模型库和方法库一样,知识库中的内容也随着人们对服装连锁企业物流业务的不断了解而日益完善,从而为服装连锁企业物流决策支持系统提供更好的支持。
4基于大数据背景的服装连锁企业物流决策支持系统
服装零售业因连锁化、信息化、规模化,已成为当今社会的支柱产业。服装连锁企业物流的目标通常包括5个方面(即5S目标):
(1)无缺货、货损、货差等现象,费用低、准时供货、柔性供货等,实现服务目标(Service);
(3)有效利用面积和空间,实现节约目标(Spacesaving);
(4)以物流规模作为物流系统目标,追求规模效益,实现规模目标(Scaleoptimization);
(5)正确确定库存方式、库存数量、库存结构、库存分布等,实现库存目标(Stockcontrol)。
相对于工业物流,服装连锁企业物流具有变价快、订单频繁、折零、退货、更换、保质期等特点,这使得服装连锁企业的物流要求更快的反应、更复杂的技术和信息支持。因此,大数据背景下的服装连锁企业物流决策支持系统是我国物流连锁企业物流决策支持系统的发展方向。
4.1数据仓库
大数据背景下,数据仓库中的海量信息可通过人工或者智能设备收集并随时更新,存储在相应的数据库中。与传统采样方式不同,大数据背景下的数据仓库直接采集最完整、最原始的数据(包括半结构化数据)进行存储与分析,利用已确认价值的规范性数据;为了保持资料的完整性,将那些具有潜在价值却无明确分析方法的数据存储起来。
4.2模型库和方法库
4.3知识库
在“互联网+”时代,知识通过各种方式不断累积,知识库中的陈述性、过程性知识也得到不断扩充,使得知识库中的知识得到不断完善,从而对数学模型的解释更加清晰、人机交互更加明了。基于大数据的服装连锁企业决策支持系统与传统的服装连锁企业决策支持系统相比,知识在不同层级的流通更加有序、快捷,物流各环节更加协调,促进服装连锁企业物流向有利于客户个性体验的方向发展。
5基于大数据背景下的服装连锁企业物流决策支持系统业务实例
服装连锁企业物流决策支持系统主要包括库存控制管理系统、设备设施管理系统、运输管理系统、信息处理系统、日常业务管理系统等,本文以服装连锁企业物流中心的配送业务为例,介绍基于大数据背景的服装连锁企业物流决策支持系统的应用。
5.1配送中心装车
在配送中心装车时,要注意以下两点:
(1)车辆装车时要进行电子登记。通过手持式RFID设备,对装有服装的纸箱进行扫描,然后将该纸箱装进配送车辆。
(2)装车完毕后的配送安全。为了方便配送途中的监管,将服装配送车辆统一安装电子挂锁。
5.2途中监管
5.3卸货交接
6结语
服装连锁企业物流决策支持系统可为仓储、配送、分拣等子系统提供决策支持和服务,该系统不仅需要进行理论研究,更重要的是要进行实践,通过实践对系统进行优化。在“互联网+”时代,研究基于大数据背景的服装连锁企业物流决策支持系统无疑具有非常重要的意义,尤其在数据挖掘技术的研究与模型库的充实上。
参考文献
[1]陈平,徐云云.大数据时代基于云会计的企业库存管理研究[J].会计之友,2015(6):134-136.