十年后,AI将彻底改变这些行业软件开发机器人人工智能新浪科技

中金公司(CICC)发布了一份长达71页的人工智能的证券研究报告《人工智能时代,10年之后我们还能干什么?》。对全球特别是中国企业当下的人工智能态势作了全面的介绍:包括BAT、华为、科大讯飞、海康威视等企业的市值、研发投入开支与研发费用率以及排名等详细信息。报告涉及安防、互联网、消费电子、汽车、医疗、通信、芯片7大行业。

主要观点

风险:人工智能创新进度低于预期。

报告认为人工智能服务提供商之间的竞争主要包括两个维度

根据耶鲁大学和牛津大学的研究人员对352位人工智能专家进行了采访,人工智能到2060年前后有50%的概率完全超过人类。这份研究预测在10年内,人工智能将会在以下领域超过人类:翻译领域(2024),高中水平的写作(2026),驾驶卡车(2027)。

从技术角度来看:

语音技术成熟但应用场景有限。语音识别是目前发展最成熟的人工智能技术。Nuance,科大讯飞,Google,百度等主流厂商的近场语音识别率都达到99%以上。但目前应用场景局限在电子病例,智能客服,在线教育,车载导航等少数几个领域。随着未来语音识别种类的进一步丰富,识别环境通用性的增强,以及远厂语音技术的突破,一定会帮助拓展其应用范围到智能家居等更多场景中。

图像识别落地机会最多。图像识别技术不但有着非常高的识别准确率,而且能够很快给出智能的反馈,因此图像识别技术最容易快速落地到各行各业中。安防行业中的车辆数据提取,医疗行业的影像诊断,电商行业中的精准营销,以及辅助驾驶都为图像识别技术提供许多落地变现的机会。

智能机器人技术有待成熟。我们注意到一些公司开始在仓储机器人、手术机器人等细分行业进行探索。但技术还有待成熟。

从行业角度来看:

安防是人工智能在中国最容易变现的行业:十几年的平安城市建设,使中国的城市管理者已经积累了强大的视频数据采集能力。交通拥堵及反恐等应用场景又急需最先进的人工智能技术。

AI促进消费电子升级换代:3D光学感测等AI功能会帮助现有智能手机提高售价,同时促进智能音箱等新品类的发展。

汽车行业2021年前后实现无人驾驶:随着TeslaAutoPilot2系统的发布,GM宣布自己的自动驾驶系统SuperCruise。我们注意到汽车智能发展呈现加速趋势。我们预计汽车主机大厂在2021年前后能够实现商业化的无人驾驶服务。

医疗行业空间巨大,但技术还有待成熟。电子病历的建立,不仅仅用到了语音识别技术,也整合了医疗大数据;影像诊断则用到了图像识别技术,现在在国内外都已经形成成熟的商业模式。辅助治疗和手术机器人由于技术的尚不完善,还在小范围推广。由于语音识别技术和机器视觉技术的成熟,大量应用这两个技术的行业将迎来AI变现的更多机会。

直接受益行业:

传感器:第二是收集数据需求的增加,手机及汽车上搭载传感器数量大幅上升。我们预计传感器市场从2016年的82亿美金扩大到2025亿的290亿美金(15%CAGR)。

主要图表:视频、智能驾驶、软件框架、芯片、光学、音箱、云7大产业链

中国视频监控行业在过去十几年经历了两次重要的升级换代:

(1)高清化:在这次升级的主要变化是摄像机的清晰度从标清(30万像素)升级到100万像素或以上。图像传输方法从原本通过同轴电缆传输的模拟信号过渡到通过局域IP网或同轴电缆传输的数字信号。后端设备也从DVR(DigitalVideoRecorder)过渡到NVR(NetworkVideoRecorder)。NVR的物理位臵还是在本地(例如,小区内)。

(2)网络化:在这次升级中的主要变化是,视频被直接传回数据中心内的集中存储

(IP-SAN)。主要的优势是方便集中管理以及可监控的区域大大增加。

随着2016年以来人工智能技术在视频分析领域的突破,我们认为视频监控行业正处在第三次重要的升级周期的开始阶段。

(3)智能化:我们认为这次升级主要包括:(a)前端摄像机的智能化升级以支持结构化数据提取,(b)后端设备强化计算分析功能,以支持复杂的视频分析,(c)对应特定行业应用的人工智能分析软件快速增长。

安防摄像机的智能化升级

传统的网络摄像机直接把高清视频回传给数据中心里的NVR,由于回传视频数据量巨大,很难对所有图像进行实时分析。大部分时候是对保存的图像进行事后分析。通过在网络摄像头上添加人工智能芯片(例如,NVidia的JetsonTX2、Movidius的Myriad2Vision等芯片),前端摄像头可以实时对视频数据进行结构化处理。例如,设置在交通路口的摄像头可以提取车牌,车型等汽车信息,和乘客数量,是否带安全带等乘客信息回传给数据中心。方便进行实时分析,优化系统反应能力。

根据统计,全球安防摄像头市场2016年约95亿美元,预计到2020年将达到128.4亿美元,CAGR为8.1%。其中,网络摄像机占比将从2016年的82%上升到2020年的90%。同时,我们预计相当一部分网络摄像机将迎来智能化升级。目前,中国占据全球44%的需求,海康威视已成为安防摄像头的全球龙头。

后端设备强化计算分析功能

后端设备强化计算分析功能,以支持复杂的视频分析:传统的NVR(Networkvideorecorder)的主要功能是压缩存储视频信息。通过添加GPU等人工智能加速芯片和应用处理软件,智能NVR能够实现图像识别,特征提取,人体识别、人员检索等功能。一些公司率先在里面加入人工智能处理能力,如海康的‘超脑’系列。

根据数据,后端录像存储设备的市场规模2016年约38亿美元,到2020年将达42.7亿美元,CAGR为2.4%。中国依旧占据了全球42%的市场需求,海康威视成为全球龙头。从产品占比趋势观察,基于服务器的集中式存储的占比将逐渐降低。这表明未来的存储将更加分散化,NVR等设备的增长更快。

视频管理分析系统(VMS)新增人工智能功能

视频管理分析系统(VMS)的主要功能是汇集分析视频信息,以及控制前端安防设备。由于技术上的限制,在人工智能拘束出现以前,实时视频分析的应用范围一致相对较小。

传统上,中国市场客户倾向于购买包含前端摄像机、后端存储设备和VMS的一体解决方案,所以海康威视、大华股份、宇视科技等拥有软硬件一体化解决方案的厂商一直保持较高市场份额。随着对基于人工智能的视频分析产品的产品要求不断提高,商汤科技、Face++等在人工智能算法上有特色的公司也积极切入VMS市场。

海康威视:针对公安行业、交通行业、金融行业、司法行业、能源行业、智能楼宇行业、文教卫生等七大行业分别开发了各自的解决方案。根据IHS的统计,海康的iVMS系列产品中国市场占有率23%。

东方网力:广泛应用于各行业、公安、平安城市等领域。为弥补算法方面的短板,东方网力和商汤科技合作,提升人脸识别的性能。

Face++:专注于人脸检测,包括人脸检测、对比、搜索、关键点定位、人脸属性。并提供人工智能开发平台。

平安城市新阶段带动智能安防快速发展

根据统计,2016年全球安防设备市场规模达到158.6亿美金,同比增长6.6%。其中中国市场最大,市场规模67.25亿美金,同比增长11.6%,占全球42%。美洲市场第二,市场规模39.6亿美金,同比增长4.1%,占全球25%。

从中国市场来看,我们认为市场主要包括三个细分市场

(1)政府市场(30~35%):主要包括各地公安,交通,司法部门。销售渠道以系统集成商为主。需求受政府固定资产投资拉动,对价格不敏感,是视频分析服务的重度用户。

(2)大企业市场(35~40%):主要包括银行,电信,石油,文教卫等大型国有企业和事业单位等。销售渠道以解决方案为主,需求受经营规模扩大的影响。

(3)中小企业及个人市场(25~35%):主要包括中小企业,也包括个人消费需求(尽管需求很小)。销售渠道以标准产品的分销为主。

交通违法抓拍

通过对前端摄像头和后端系统进行智能化升级,利用前端摄像头对抓取的图像快速处理,将明显的违法行为进行智能识别,并在后端进行收集和二次处理。可对多种交通违法行为进行取证,包括机动车闯红灯、违法停车、压线、变道、逆行、超速、人行横道不避让行人、违反规定使用专用车道、行人闯红灯等各种交通违法行为。

犯罪分子抓捕

另一个案例是,2012年的‘1.6苏湘渝系列持枪抢劫杀人案’,当时对1万多个监控点产生的2000多T数据进行人工查阅,投入了1500多名干警耗时一个多月。根据海康威视估算,如果采用人工智能分析仅需要几分钟。

不论全球市场还是中国市场,海康威视、大华股份、宇视科技等中国公司已经占据较为领先的地位,其中海康威视在全球和中国市场均排名第一。

我们认为,一方面受益于中国视频监控行业规模在全球占比较高,另一方面,中国龙头公司的技术和产品的竞争力有了极大的提升。我们预计,这种趋势仍会保持,中国龙头公司的全球市占率将继续提升。

电子商务:AI简化用户的消费行为

2015年以来,由于互联网流量红利逐渐见顶,行业发展重点走向以提升转化效率以及付费习惯培养的精细模式。在电子商务领域,由于大数据的累积以及底层算法的快速发展,人工智能开始进入该领域,通过对消费者购买决策过程的深度学习和解析精准定位用户。主要的应用是为了更精准的推荐商品以及对用户的购买行为作出更好的解释。

大数据是人工智能的重要基础,复杂场景催生技术革新

经过爆发式的行业增长,电子商务行业已经完成了早期的数据累积,大数据的产生为人工智能技术打下基础。而购物场景不断延伸,端到端的互联网消费者行为呈现高度离散的状态,消费者可触达点的增加同样加大了电商平台对于消费行为把握的难度,因此亟待更高效的方式对用户购买行为作出更好的解释,以实现更精准的商品推荐。

人工智能的知识发现体系更适合解释当下更为复杂的线上购买决策

互联网环境下,品牌以及商品与消费者的接触点显得分散且数量远大于从前,人工智能的数据挖掘和知识发现功能为解析大量数据间隐藏的依赖关系提供了具有参考意义的一条解决路径。目前该技术在中国的具体应用表现为在售前,通过基于大数据分析的用户画像个性化推荐,向消费者主动展示其购买的产品内容。

电商领域人工智能技术的商业化已经开始萌芽,阿里巴巴自2015年开始加速个性化电商推广工具的研发,并已将一部分人工智能算法融入底层结构,例如:

基于全网电商数据、跨渠道数据以及第三方数据的客户运营产品–聚星台,可实现店铺‘千人千面’的个性化互动营销以及全域会员运营。

通过标记的方式圈定潜在客群,建立个性化的用户细分和精准营销的数据管理合作平台–达摩盘。

以及开放付费API的人工智能系统–阿里云ET等。

感知智能引领信息检索以及沟通效率提升,即看即买

尽管互联网技术解决了传统零售获客能力有限的问题,在购物体验以及沟通交流方面仍然与线下存在差别,尤其是非标品的售卖,例如服饰退换货率可以高达30~40%。如何更高效的发掘和理解用户需求进行沟通一直是电商企业努力的方向之一。更为直观方便的图片、语音识别技术因此被应用到了电商服务上。

消费者的购买需求通常具有即时性的特征,这一点可从2016年底开始奢侈品牌纷纷推出‘即看即买’的营销策略中窥见一二。通常电商消费者在搜索商品时平均需要6个以上的点击来达成交易,并伴随大量的输入以及重复搜索尝试。2013年底在移动电商渗透之前Statista曾有研究表明,消费平均购物放弃率为67.9%。而今天这一比例已大幅下降,除了更加便捷的购物车服务以及支付环节以外,搜索环节的匹配效率提升同样起到了提升转化率的作用。

图片识别加强电商平台数据流动效率。图片搜索通过色彩图形以及空间的比对,即使消费者并不知道品牌或商品名仍然可以快速帮助用户找到其感兴趣的商品,真正实现了‘即看即买’。对于平台卖家来说,自商品上线的那一刻图片识别技术就开始贯穿始终,包括自动检测商家上传图片是否存在侵权、投放推广时的自动匹配以及关键字搜索式的自动图片推荐;从而提升了电商平台的数据流动效率以及运营效率。

语音识别技术向智能客服的独立产品进一步迭代。

精准营销:提升直接反映在单位流量价

智能投放

AI+消费电子:促进换机与升级,孕育新市场

人工智能加速升级,孕育新市场

新功能推动单机价值量上升。AI算法的采用带来语音识别、人脸识别、VR/AR等新功能在消费电子中的渗透,对于整机厂而言,新功能将带来单机价值量的提升,实现丰富产品线和差异化,以提升或者稳定产品价格;而对零部件厂商而言,更多传感器以及专业性能的处理器需求不断提升规格,带来市场空间的成倍增长。

AI加速新应用诞生,空间不容小觑:借助AI算法工具,例如语音识别、机器视觉、3D导航等,智能音箱、无人机、VR、共享单车、智能摄像头……我们熟悉的智能硬件都在性能和用户体验上拥有明显提升,而成本的增加微乎其微。以大疆Spark为例,其售价仅为3,299元,但拥有更先进的手势识别功能。未来,判断AI将应用于更多的消费电子领域。此类智能设备领域虽然当前尚未放量(年出货规模在1,000万台以下),市场规模在100亿美元以下,但总体规模依旧不容忽视,据IDC预测,2020年仅AR/VR可望成长至千亿美元(vs。2016年的52亿美元)。

3D光学感测:从生物辨识到AR/VR。应用场景广泛

3D光学感测看似仅是在传统二维的光学传感上增加了一个维度,但是其应用场景不可估量。我们将其简单归纳为两类:3D探测和空间定位。其中3D探测可以用于生物辨识、机器视觉、和影像感测(主要应用于辅助驾驶、3D交互等);空间定位则主要应用于3D地图构建和AR/VR定位。

受益于智能手机等消费电子需求带动,根据Yole预测,在2016~2022年3D感测设备市场空间年复合增速将达37.7%,其中2017年设备市场空间接近20亿美元,其中消费电子贡献约25%。

算法难度从简单到复杂。在硬件上,3D光学感测在发射与接收端已非常成熟;在算法难度上,生物辨识与机器视觉属于较为基础的应用,而辅助驾驶、3D交互则需要叠加多种基础方案配合形成,到AR与VR,则需要前几种技术的综合叠加和有机应用,且对处理器的运算能力要求极高。

生物识别:3D光学感测可应用于虹膜、面部、光学指纹识别等多项生物识别领域,生物识别的算法复杂程度低,也是3D光学感测的入门级应用。

虹膜识别稳定性较指纹识别更高,3D光学感测独有优势。与指纹识别的方案类似,3D光学感测还可以进行面部识别和虹膜识别,虹膜识别系统具有高安全性的优势,可找出约2000个不同的特征点,与指纹约100个特征点相比,精确性更高。但虹膜图像因为尺寸小,景深小,有效对焦不方便,因此图像获取是一个具有挑战性的问题,采用波长为800纳米上下的近红外光源采集,虹膜图像是最清晰的。

面部识别当前误差仍较大。当前,面部识别的精准度无法上升到令人满意的阶段,对相似度高的脸容易出现识别误差,且在佩戴眼镜的情况下则无法识别。

3D机器视觉:提供更精确的信息,应用于汽车和精密制造。目前我们所应用的机器视觉大多数是2D视觉,2D视觉一般只能做到读取编码、条形码等,无法读取空间位臵。三维机器视觉提供准确、实时的三维位臵信息,以便在汽车和精密制造产业中实现具有挑战性的组件验证、物流和机器人应用的自动化,包括装上货架/取下货架、卸垛、打包和组装验证等。产业尚处于萌芽期。整体而言,3D机器视觉实现的门槛与生物识别相似,机器视觉龙头Cognex早已有代表性的产品推出。目前主要应用于对先进生产要求高的汽车工业等,但大规模渗透尚未打开。

辅助驾驶:激光雷达在ADAS领域应用前景甚广,应用障碍主要受制于成本。影像感测其实最先应用于汽车辅助驾驶(ADAS)领域,发射和接收装臵一般被称为激光雷达。3D光学感测起到收集路况信息的主要作用,在自适式巡航控制、车道偏移警示、车侧盲点侦测、前方碰撞警示、夜视与停车辅助系统等多领域发挥感测功能。但受制于成本尚未普及。

相较于毫米波雷达,激光雷达的主要优劣势有:

优势:精度更高,速度更快,适合远距离传输;

劣势:在雨雪雾等极端天气下性能较差;采集的数据量过大,目前价格高昂。

3D交互

LeapMotion的手势识别:2013年,LeapMotion采用两个可见光摄像头完成3D手势建模。手势的语法信息是通过手的构形、手的运动变化来传递。人手是一个多肢节系统,随着关节的运动手的形状在不断变化,这种变化可以通过指段和关节的状态空间位臵的变化来描述,建立手的几何模型和运动学模型。

大疆Spark将目标跟踪与机器视觉算法相结合:2017年5月,大疆Spark发布,在无人机上引用红外感测的3D手势识别,原理是将计算机视觉算法中的手势识别和目标跟踪算法与普通的工业摄像机相结合,带动手势识别的应用领域扩展到消费级无人机。

AR/VR:Tango是最具代表性的移动端3D空间测绘项目。Tango计划是谷歌自2014年开始开发的项目,此项目的宗旨又被形容为‘让机器/设备像我们一样看世界’。以最常见的智能机为例,其后臵摄像头仅能拍照二维画面,手机无法真正识别空间的存在。而Tango可以让这些设备能够具有完整的空间意识,并且能够充分理解我们和环境的关系。Tango最大的贡献在于3D测绘,即对周围的环境和区域扫描并绘制立体地图。实现:

重塑Google地图,借助消费者的手机,通过室内导航和测绘搭建完整的3D地图。

VR应用,GoogleI/O大会提出开发VR一体机,不借助类似HTCVive外臵的激光定位设备,仅靠自身的地图就可以实现3D空间定位,足以见其布局3D地图用意深远。

AR技术,实现教育、虚拟购物、游戏娱乐等多种功能。

苹果的采用将带动3D光学感测在手机中的渗透

前臵3D光学感测,判断用于生物辨识:我们判断苹果在今年的纪念款iPhone中将采用前臵3D光学感测,期初主要用于生物辨识(如虹膜辨识、人脸辨识等),以替代现有电容指纹识别方案,达到取消Home键,提升屏占比和改善用户体验。

AR与AI算法和GPU密不可分。3D光学感测摄像头提供了景深数据,若配合算法就可以实现增强现实功能,其中AI算法至关重要,这在硬件上对GPU提出了要求。以微软Kinect为例,其算法要用到GPU的平行加速能力,否则无法实现real-time。2017年4月,苹果表示将自行研发GPU,未来15~24个月间减少依赖GPU长期合作伙伴英国ImaginationTechnologies,并通知Imagination将不再需要后者帮助开发iPhone和iPad的图形技术,终止专利费支付。我们认为与其一直以来致力于自主发展AI软、硬件有关。

智能音箱主要由麦克风阵列,远场语音识别算法和扬声器组成。Amazon最早开发实现基于麦克风阵列的远场语音识别,大幅度扩大了语音识别的应用场景。亚马逊设计了一个名为‘ARS’的自动语音识别处理系统。ARS由七个麦克风和一个音频信号过滤系统构成。七个麦克风组成的列阵能让Echo捕捉到环境中的细微声音,音频信号过滤系统过滤掉环境噪音,从而辨别出人声。使用ARS后,即使用户在25英尺(7.62米)之外发出命令,Echo也能够准确识别。除了Amazon以外,科大讯飞和联发科也开始提供类似整体解决方案。中国公司中,歌尔股份(002241.SZ),瑞声科技(2018.HK)等是全球重要麦克风阵列厂商,国光电器(002045.SZ),通力电子(1249.HK)是主要音箱厂商。

结构光在硬件上增加了衍射元件。结构光和TOF在硬件上的差异不大,都由发射端和接收端构成,主要的区别在于结构光需要将光源变成特定的图谱,所以需要衍射光学元件(DOE)。硬件配臵分为发射端与接收端两大部分:发射端:主要厂商为国际光通信和传感器大厂,集中在欧美。

VSCEL作为光源:3D感测主要采用红外光作为光源,原因是比可见光波长更长。VSCEL的光线相较于普通激光器而言具有低功耗、体积小的优势。VSCEL原先主要应用于光通信和光互连领域,国外Finisar(FNSR.US)和Avago两巨头占据市场的80%,被广泛采用于辅助聚焦、距离传感、识别等领域。目前国内仅光迅科技具备10Gbps以下VCSEL生产能力。

晶圆级镜头、滤光片和DOE:

晶圆级光学镜头(WLO)主要功能是将点光源转化为线光源,WLO用半导体工艺生产,提高了镜头的生产效率,一片8寸的白玻璃可以切割成数千颗准直镜头;缺点在于不能调焦。主要厂家为奥地利的AMS(AMS.SIX)。AMS2016年10月收购掌握了大部分专利的准直镜头WLO(Wafer-levelOptics)制造商Heptagon。

滤光片:过滤掉频率不符合的光源。水晶光电(002273.SZ)与Viavi(IIVI.US)国际领先。

接收端:除舜宇光学和ASMPacific占据领导地位外,欧菲光与球台有望受益于安卓阵营对3D光学感测的采用。

镜片:与可见光镜片不同,红外光镜片需要满足广角的特性,以尽可能保留深度信息。例如GoogleTango的红外镜头,就是舜宇光学(2382.HK)制造的;主要厂商还包括台湾的大立光(3008.TW)和玉晶光(3406.TW)。

CIS传感器:CIS传感器由可见光和红外传感器组成,主要厂商为奥地利AMS(AMS.SIX),以及意法半导体(STM.N)。

CIS传感器制造设备和主动对准工具:主要提供商为ASMPacific,占据全球主要市场份额。

模组:舜宇光学、欧菲光、邱钛科技等在模组上占据全球光学模组的重要地位。在联想Phab2pro中,舜宇光学提供了后臵三颗镜头的模组,包括一颗TOF镜头发射脉冲光及一颗鱼眼镜头进行动态捕捉。

AI+汽车:全球智能驾驶发展最新动态5

主要车厂加快自动驾驶布局,互联网科技公司积极切入

整车厂加快布局自动驾驶,预计到2021年全面实现L5。

目前看来,汽车市场普遍处于SAELevel2自动驾驶的部署,即辅助自动驾驶为主,主要车企的规划则大多是到2020~2021年间实现Level5的完全自动驾驶。

福特:计划2021年实现完全自动驾驶汽车(SAELevel4)的商业运作,这款车将不会有方向盘、刹车踏板、油门等,最初拟用于提供打车或车辆共乘服务,不会首先面向消费者。

通用:通用计划逐步提升自动驾驶水平,近期聚焦半自动驾驶技术,如‘超级巡航(SuperCruise)’有望在今年晚些时候在凯迪拉克CT6上实现,在高速公路上行驶将能够解放双手。我们认为,在不久的将来,一旦通用将超级巡航引入到其车型中,极有潜力提升其量产车型的竞争力和定价能力。

日产:在自动驾驶技术的商业化应用上极有野心,2016年8月推出的Serena小型货车上搭载了ProPilot高速公路单车道自动驾驶技术。这一技术得到了消费者的积极响应:与上一代车型相比,上市后的七个月内订单上涨34%,其中56%是配备了ProPilot系统。2018年,日产计划推出多车道自动驾驶技术,首先是实现在高速公路上的自主变道,到2020年实现在城市道路上的自动驾驶。

大众:大众与科技公司Mobileye签署合作协议,在自动驾驶领域共同开发全新高智能导航地图。大众集团的2025战略,提出将自动驾驶技术、电气化及数字化这三大领域作为集团未来发展的重点。在今年的北美车展上,大众发布了可实现高度自动驾驶的电动概念车I.D。

互联网公司积极切入无人驾驶

除了传统汽车厂商,科技公司也把目光聚焦在无人驾驶领域,通常从汽车智能化的核心软件技术入手,切入无人驾驶领域。百度和谷歌在高精度地图方面有显著优势,Uber在无人货运方面已有布局,苹果开发了智能防撞系统。

同时,自动驾驶领域的合作趋势日趋明显。1)对传统汽车厂商来说,与互联网公司、有科技含量的零部件公司、以及汽车共享服务商开展合作,是避免被淘汰的有效路径;2)对科技企业来说,自主造车并非最明智的选择,毕竟未来汽车不仅仅等于‘互联网+轮子’;3)对零部件供应商来说,只有依托于汽车制造和科技企业,才能推动汽车互联、加速无人驾驶或自动驾驶的普及,从而创造价值。

自动驾驶硬件:通用平台正在兴起

汽车芯片:合纵连横加速发展

通常汽车主机厂在零部件的采购上,倾向采用垂直整合的商业模式。主要主机厂的电子元器件供应链也相对独立。全球前四大车载芯片供应商恩智浦、英飞凌、瑞萨,意法半导体都有各自主要服务的主机厂和一级供应商。

过去几年,包括Mobileye在内的主要汽车芯片公司已经在提供ADAS的芯片解决方案。从性能上来看,汽车芯片和英伟达、高通等提供的消费级芯片有较大差距。但由于整车厂对汽车芯片的安全性有较高要求,消费级芯片很难直接进入汽车芯片市场。

在过去的一年里,我们看到在汽车芯片行业发生了一系列并购。

英特尔/Mobileye:Intel宣布以150亿美金并购Mobileye。在汽车半导体领域,英特尔同时拥有Mobileye、Yogitech、Arynga等几个重要资产。Mobileye目前是领先的汽车视觉处理供应商,已为25家厂商的273款车型配备单目摄像头视觉处理芯片,Mobileye的EyeQ系列均为完整的SoC架构,在SAE-Level3和Level4上分别有5个合作项目。公司预计到2019年实现收入11亿美元,隐含年均增长46%。

公司从2012年开始研究深度神经网络(DNN,深度学习算法的一种)在汽车视觉中的应用,2015年10月量产的第三代芯片产品EyeQ3使用了DNN算法用来构建环境模型,实现了目前业内最为精湛的holisticpathplanning。

高通/NXP:高通宣布以380亿美金并购恩智浦(NXP)。2016年发布BlueBox平台,为OEM厂商提供设计、制造、销售Level4(SAE)自动驾驶汽车的解决方案计算平台。

瑞萨电子(Renesas)2017年4月发布了RenesasAutonomy,一个全新设计的ADAS和自动驾驶开放平台。

意法半导体(STMicro)与Mobileye合作开发,两家公司最早在2005年就开始研发ADAS芯片。2016年5月Mobileye和意法半导体宣布将合作研发Mobileye第五代系统芯片EyeQ5,作为2020年实现全自动驾驶(FAD)汽车的中央处理器,并执行传感器融合程序,预计在2018年上半年可提供EyeQ5的工程样品。

传感器:摄像头搭载数量上升,激光雷达加速发展

通过对最新发布的智能驾驶平台的分析,我们注意到两个明显趋势。

搭载摄像头数量上升:我们认为,要实现L3/4级别的自动驾驶,单车的摄像头数量将从L1/2级别的2颗增加到10颗。Tesla新推出的AutoPilot2平台总共含有8个摄像头,其中包括1个3目前视摄像头,3个前环视摄像头,3个后环视摄像头,1个后视摄像头,比AutoPilot1中1个单色前视摄像头数量大幅度增加。

激光雷达技术发展迅速:激光雷达能够发射激光束,并通过捕捉反射回来的信号绘制出3D模型。大多数切入自动驾驶的车企都选择搭载激光雷达,除了Tesla只依靠摄像头和普通雷达。制约自动驾驶向L3/4挺进的主要原因在于搭载的电子元器件成本太高,激光雷达目前的平均售价在5,000美金左右,因此如何快速的降低成本成为重中之重。Velodyne于近日推出了一款经济实惠的新型激光雷达,与传统的机械激光雷达不同,新型传感器能使用电子束引导激光束转向。这款新产品具有体积小,性能稳定,价格便宜等优势。

市场规模:2025年达到486亿美元

自动驾驶硬件规模2025年可达486亿美元。Gartner认为,现有汽车电子占全球半导体市场仅为10.0%左右,2017年市场规模2017年将成长6.2%达到343亿美元,2018年增长7.2%至358亿美元。我们通过对各等级的自动驾驶渗透率进行了测算,在2025年自动驾驶传感器与计算芯片的规模可达486亿美元。

2025年L3/4的加装成本有望下降至4,688美元。我们对主要硬件成本的价格曲线进行了假设,随着摄像头、激光雷达、芯片成本的不断下降,以及软件处理的优化,判断到2025年,L3/4等级的自动驾驶成本有望从超过2万美元缩减到4,688美元,同时带来渗透率的提升。

下图归纳了亚洲自动驾驶/电动车产业链的情况。

中国在动力电池技术上全球领先,但在汽车电子上相对薄弱,主要平台目前掌握在Continental、Bosch、Denso等全球一级供应商手里。中国公司主要作为二级供应商参与到整个供应链中去。中国公司相对较强的零部件包括:(1)电子传感器(舜宇),(2)车机(航盛,华阳,德赛)。

中国厂商在汽车电子产业链中的布局:

舜宇光学:是全球最大车用镜头提供商,产品覆盖了车载摄像头的各个领域(前视、后视、内视(驾驶员监控/手势识别)、环视、智能后视镜等。进入HUD与激光雷达领域,全方位布局传感硬件。

欧菲光:公司通过汽车电子业务、智能中控业务、智能驾驶业务以及互联网+业务切入汽车电子领域。公司在传感器(摄像头、雷达)、控制器(高清全景环视系统、ADAS高级辅助驾驶系统)等方面进行了产品布局。同时,公司投资了美国的CruiseAutomation,其产品可将普通车辆变成自动驾驶汽车,第一代自动驾驶系统适用于奥迪A4和S5。

得润电子:拥有全面的连接器布局,前瞻性布局车联网,收购意大利OBD(行车记录仪)模块龙头企业Meta,向车联网保险等软件服务领域拓展。

四维图新:布局无人驾驶,构建高精度地图、动态交通信息。同时,打造趣驾WeDrive3.0完整车联网生态平台,产品包括纯车机方案WeCar、车机互联方案WeLink、和操作系统趣驾OS。

比亚迪:布局BMS,母公司集电池、BMS、电动汽车研发于一身,垂直整合优势明显。比亚迪汽车电子已经有多年积累,2014年上市内臵Android操作系统的车型。

德赛电池与欣旺达则在电池封装与BMS上领先布局。

深圳航盛电子(未上市)致力于为整车厂开发生产智能网联汽车信息系统、智能驾驶辅助系统、新能源汽车控制系统等产品。未来,公司将重点布局车内ADAS、安全技术和智能驾驶技术。

德赛西威(未上市)与百度联手,将围绕BCU和MapAuto两个维度,在高精度地图与自定位、汽车环境感知、决策等技术领域展开合作。其大股东是上市公司德赛电池的母公司。

THE END
1.市场调研的新玩法:大数据人工智能和神经营销本文将介绍三种新兴的市场调研技术:大数据、人工智能和神经营销,并结合尚普咨询公司的具体案例,展示它们在市场调研中的实践效果。一、大数据 大数据是指规模巨大、类型多样、价值密度低、时效性强的数据集合。大数据技术是指利用先进的软硬件平台,对大数据进行采集、存储、管理、分析和应用的技术。大数据技术可以帮助企业https://baijiahao.baidu.com/s?id=1768009363277847253&wfr=spider&for=pc
2.人工智能在营销领域的应用有哪些优势?人工智能在营销领域的应用有哪些优势?()点击查看答案 你可能感兴趣的试题 第1题:评标活动开始的第一步是准备工作。 答案解析与讨论:点击查看 第2题:智能技术在制造业中提升了哪些方面的效益?() A.生产效率 B.产品质量 C.成本控制 D.员工满意度 答案解析与讨论:点击查看 第3题:高压断路器有强力灭弧装置,既能https://www.netkao.com/shiti/827103/31700574qeyezzrzf.html
3.人工智能在营销领域的五大应用嘲在当今数字化转型的浪潮中,人工智能(AI)作为一项革命性的技术,正迅速改变各行业的运作方式,尤其在营销领域,AI提供了多种前所未有的创新与机遇。企业通过AI可以更精确地分析数据、了解客户需求、优化广告投放并提升客户体验。以下是AI在营销领域的五大应用场景,它们正在重塑品牌与客户之间的互动方式。 https://www.sinostrong.com/article/2552.html
4.人工智能在市场营销领域的应用现状与趋势研究可以利用智能化的技术来分析消费者的喜爱和偏好,以此来改进营销策略,增强消费者的购买欲望.目前人们使用较多的有SSP、DSP、AE、RTB等,这些都是人工智能技术的代表,这对于推动市场营销朝着智能化方向发展具有重要作用.本文将会针对人工智能在市场营销领域的应用现状与趋势等内容进行具体分析,让人们更好地了解人工智能技术http://www.yidu.edu.cn/detail/article/5d09caebede4e441850ffb71.html?q=C/N&uorg=999999
5.艾瑞观点AIGC技术在营销领域应用三大方向网络营销艾瑞预测,未来,AIGC技术在营销领域的应用将会向模态升级、组合升级和赋能升级三方面发展。 一、模态升级 预训练大模型由单模态走向多模态,塑造有温度的拟人化智能营销 随着深度学习技术的不断突破以及大量数据源的反复训练和积累,大模型将更好的具有对于不同形式描述的理解和分析能力,捕捉到更精准的特征与更全面的信https://news.iresearch.cn/content/202403/495422.shtml
6.未来热门的人工智能技术应用的领域主要有哪些人工智能的发展大摘要:人工智能取得了令人叹为观止的进步,例如自动驾驶汽车、语音识别和语音合成,人工智能技术已经渗透到他们生活的角角落落。未来热门的人工智能技术应用的领域主要有哪些?医疗方面也肯定会有着巨大的差距。人工智能通过自动浏览用户的病情将自动化进行诊断,同时,可穿戴医疗设备,移动应用,都能够让我们在未来的人工智能医疗https://www.maigoo.com/goomai/187803.html
7.人工智能在商业营销中的十个应用腾讯云开发者社区【导读】这几年人工智能的发展趋势迅猛,不仅在科学研究领域成为热门研究方向,而且涌现大量的AI创业公司。有人说2018年是人工智能落地元年,那么人工智能与商业营销究竟有哪些成功的结合呢?本文介绍了人工智能在商业营销中的十个应用,包括推荐系统、聊天机器人、决策支持、内容营销、优化网站加载、营销预测、定制网站、语音https://cloud.tencent.com/developer/article/1143451
8.人工智能在商业领域的应用人工智能在商业领域有广泛的应用,以下列举了一些主要的方面: 1. 客户服务自动化:AI聊天机器人和虚拟助手能够自动处理客户的咨询和问题,提供全天候不间断的服务。这些系统可以理解并回应客户的请求,处理从简单查询到复杂问题的解决。这种应用在银行、电信、零售等多个行业中都可见,不仅提升了效率,还增强了客户满意度,同https://www.czta.org.cn/news/16283.html
9.人工智能AI在各个嘲中的应用以及营销策略人工智能市场营销策略免费体验人工智能:-4免费体验 二、人工智能AI在各应用场景中的作用 电子商务:在电子商务领域,人工智能AI通过对用户在网站上的浏览、搜索和购买等行为进行数据采集和分析,可以为电商企业提供精准的用户画像和消费者洞察,帮助企业优化商品推荐、营销策略,提高转化率和销售额。 https://blog.csdn.net/wbryze/article/details/130626155
10.AI代写年终总结掀热潮,AI原生应用的正确打开方式界面新闻AIGC在营销领域的应用 数字营销是AIGC应用的前沿阵地之一。近日,由中国广告协会互联网广告工作委员会、执牛耳及IAB China共同发起主办的2023数字营销实战大赛中,《AI画笔连接爱,富春山居图》获得年度荣誉。这是一个AI跨越古今的故事:三百多年前,元代画家黄公望的传世名作《富春山居图》被火焚烧分二,几经流转后,前https://www.jiemian.com/article/10600387.html
11.一份AI在零售领域的应用嘲语音助手:在购物过程中,消费者可以通过语音助手实现商品搜索、下单等功能,提高购物便捷性。 数据分析:AI可以对海量销售数据进行挖掘和分析,为企业提供市场趋势、消费者行为等方面的洞察,助力企业决策。 以上仅为人工智能在零售领域的一部分应用场景,随着技术的不断发展,未来还将出现更多创新的应用。 https://www.sgpjbg.com/task/2802270.html
12.人工智能为业务营销带来的六大应用如今,基于人工智能(AI)的解决方案广泛应用在从医疗保健到交通运输等众多行业领域中,企业的业务营销也不例外。 很多业务营销解决方案都具备人工智能的功能,其中包括聊天机器人、视频制作工具等。有些人就会提出一个问题:人工智能是如何改变业务营销的? 为了理解这一点,以下介绍很多企业正在使用的重要的人工智能营销解决方https://www.jianshu.com/p/2f22800a899b
13.人工智能在生活中的应用都有哪些?> 人工智能营销用例 2021 年对全球营销人员进行的一项调查显示,41% 的受访者认为,由于在营销活动中https://www.zhihu.com/question/62512060/answer/3383170722
14.人工智能是什么好处和坏处怎么制作1、个性化推荐:基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。 https://www.cnpp.cn/focus/19983.html