从PC到移动互联网,一批搭乘流量红利快车的互联网产品,曾极速崛起。而如今,流量红利消失,一个疯狂的、传奇般的流量时代,已然结束。增量乏力,存量市场竞争更加激烈的环境下催生了精细化运营,结合大数据,对用户进行分群,针对不同群体的用户采用不同的营销策略。
兵法云:“知己知彼,百战不殆”,在整个精细化运营过程中,用户画像体系的搭建起到不可或缺的作用。前面草帽小子介绍了埋点数据采集、指标体系搭建、数仓和OLAP分析等数据基础层建设,接下来我们来研究如何从0-1搭建用户画像体系,以及用户画像的应用场景。
初识用户画像
用户画像的概念,最早由交互设计之父AlanCooper提出,是对产品或服务的目标人群做出的特征刻画。
后来,加利福尼亚大学的Syskill和Webert,通过手动收集网站用户对页面的满意度,然后通过统计分析逐渐构建出用户兴趣模型。
再随着互联网及信息采集技术的发展,加州管理大学开发了WebWatcher,可以通过数据采集器,记录互联网上用户产生的各种浏览行为以及用户的兴趣偏好,实现对用户兴趣模型的构建,并随着数据的不断累积,扩大更新系统模型,用户画像标签也更加丰富。
例如对于路飞而言,其用户画像可简单描述为18-25岁中二少年,15亿身价,爱吃肉,爱炫酷机器人,冲动性消费人群,若某电商网站提前得知了该用户信息,就可以根据其偏好特征,给其推送肉类以及高科技商品,促进路飞在平台上完成购买。
这个过程中,用于描绘用户画像的关键性因素就是标签,通常不同应用场景下,标签分类不同。
按阿里电商对标签的分类,可分为:
整个画像体系包含标签建模、画像系统、画像应用,那从数据产品层面来看,如何0-1建立用户画像体系呢?接下来我们按照如下结构进行展开:
第一步:业务需求分析
用户画像体系的建设不能凭空捏造,需要以经济建设为中心,根据实际的业务需求,考量画像系统能为业务带来的价值,所以我们第一步要做的是分析业务需求。
明确用户画像服务于企业的对象,如产品、用户运营、活动运营、市场、风控等部门;再根据业务方需求,明确未来产品建设目标和用户画像分析之后的预期效果。
就数据分析人员罗宾而言,她的目标是做用户的流失预警,做针对性的精准营销,那过程中就需要分析用户行为特征,用户的消费偏好;
第二步:搭建标签体系
从数据产品建设标签体系来看,可以根据标签的统计方式,将标签分为3类:统计类标签、规则类标签、预测类标签;
1.统计类标签
例如对于某个用户来说,其性别、年龄、城市、星座、近7日活跃天数、近7日活跃次数、累计购买金额、累计购买次数、月均消费金额等字段,
2.规则类标签
基于用户行为及确定的规则产生,在实际开发画像的过程中,根据业务的需要,由运营人员和数据人员共同协商制定,包含活跃度标签、RFM标签等。例如,对平台上“交易活跃”这一口径的定义为“近90天交易次数>3”。
下面由草帽小子来介绍,常用的用户活跃度标签、RFM标签的划分方法。
(1)用户活跃度标签
实际业务场景中会涉及根据用户的活跃情况,给用户打上高活跃、中活跃、低活跃、流失等标签。
在这里,路飞的拍脑门可行不通,标签的建设讲究定义有依据,建设有方法。
首先划分用户的流失周期,通常有2种方法:
一是拐点理论:X轴上数值的增加会带来Y轴数值大幅增益(减益),直到超过某个点之后,当X增加时Y的数据增益(减益)大幅下降,即经济学里面的边际收益的大幅减少,那个点就是图表中的“拐点”。
划分完流失周期之后,根据用户的活跃情况进一步将其划分高中低活跃。对历史数据,按照二八原则进行划分。
例如分析得出活跃次数10次以上的用户占近30日访问用户量的20%,则这批为“高活跃用户”;进一步把活跃5-10次的用户划分为“中活跃用户”;把活跃1-5次的用户划分为“低活跃用户”。
(2)RFM标签
3.预测类标签
例如,根据一个用户的消费习惯判断,他对商品的偏好程度;根据用户的退差评等行为,预测其风险程度。
一般统计类和规则类标签即可满足应用需求,在开发过程中占有较大比例。机器学习挖掘类标签多用于预测场景,如判断用户风险、用户购买商品偏好、用户流失意向等,其开发周期长、开发成本高。
(1)特征选取及开发流程
数据分类:人工对一批文档进行准确标注,作为训练集样本,未进行标注的一批文档作为测试集
数据预处理:对测试集和训练集文本进行分词处理,建立词料库,去掉停用词、语气词等
(2)计算标签权重
用户在平台上的不同行为,在用户标签层面权重不同,比如用户购买某商品的行为权重要比用户添加购物车、收藏某商品、浏览某商品行为权重依次要高。
1)TF-IDF词空间向量
TF-IDF是一种统计方法,用以评估一个字或词相对于一个文件集或一个语料库中其他词的重要程度。字词的重要性与它在文件集中出现的次数,成正比;与它在语料库中出现的次数成反比。
当用户数据达到足够密集的程度后,用户身上打的标签对应的属性会表现出较高的稳定性,这种稳定性与用户长期行为形成的个人特征相匹配。
第三步:建设用户画像系统
画像系统作为支撑系统,主要目标用户是市场、运营、产品、数据分析师等人员,满足其用户分析、标签查询、营销活动对接的需求。所以画像系统的设计需要考虑功能上的用户分析需求,以及非功能上的接口开发需求。
1.功能需求
功能上可划分为:首页画像数据、标签管理、用户查询、用户分群等。
添加分群时通常会配置人群名称、满足的条件,计算覆盖的人群数量,推送到消息通知、电子邮件、短信。
2.非功能需求
标签体系和用户画像系统都搭建完成了,那用户画像具体在哪用、怎么用,能给业务带来哪些价值呢?
第四步:画像应用
1.精准营销
短信/邮件/push营销
日常生活中会从多个渠道收到营销信息,一条关于红包到账的短信消息推送,可能会促使用户打开很久没访问的app,一条关于心愿单内的降价消息,可能会刺激用户打开推送链接,直接购买。
借助画像系统进行营销需要注意的有:
短信敏感度:有的用户对营销短信的敏感度较差,比如从历史数据来看,推送其10次短信,只打开过1次或从未打开过。考虑到短信渠道需要营销成本,可以把这批用户排除掉,并减少对用户的干扰。
无效手机号:对于平台上随意填写非自己的手机号、手机号已经作废/更换,接收到短信回复了“TD”的用户来说,短信无法接收,属于短信黑名单,这类用户也需要排除
对营销商品感兴趣的用户:近期曾多次浏览、收藏或是加购、下单行为的用户,是某累商品的潜在意向用户,可以通过满减优惠券或是红包的方式进行营销。
客服话术
当我们在向某平台的客服部门投诉、咨询或反馈意见时,客服人员可以准确的说出我们在平台的购买情况,上一次咨询问题的处理结果等信息,针对性的提出解决方法,对于高价值用户提供VIP客服通道等专项服务。
2.推荐系统
3.数据分析
用户画像的标签可应用于各类分析,包含用户分析、订单分析、漏斗分析、人群特征分析等。
总结
正所谓万变不离其宗,就像路飞的技能看起来千变万化,其核心点都是在用橡胶能力做各种变化。数据产品的各种变化形式,其核心在于业务。
作者:草帽小子;公众号:一个数据人的自留地,wx:luckily304
本文由@草帽小子原创发布于人人都是产品经理。未经许可,禁止转载