正态分布(NormalDistribution),也被称为高斯分布(GaussianDistribution),是一种连续型概率分布。它具有一个对称的钟形曲线,以均值(μ)为中心,标准差(σ)为宽度。正态分布在统计学、概率论、工程学等多个领域具有重要的应用价值。
正态分布的概率密度函数可以表示为:
概率密度函数表示在给定值x附近的单位区间内正态分布的随机变量取值的概率密度。其中,μ表示均值,σ表示标准差
正态分布在实际中的应用是广泛的。例如,人的身高和体重分布近似于正态分布。此外,考试成绩通常呈正态分布,高分和低分的人数较少,而中间分数的人数较多。这种分布模式在许多领域都有重要的应用价值
伯努利分布(BernoulliDistribution)是一种离散型概率分布,用于描述只有两种可能结果的单次随机试验。伯努利试验可以是正面或反面,成功或失败,是或否等。例如,抛硬币、检测产品是否合格、某人是否购买某种产品等。
伯努利分布的概率质量函数为:
在伯努利分布中,p表示成功的概率,其取值范围为0到1。当p等于0.5时,伯努利分布就趋近于均匀分布
伯努利分布在实际中的应用:例如二项分布就是伯努利分布的n次独立重复试验。
二项分布(BinomialDistribution)是一种离散型概率分布,用于描述在n次独立重复试验中成功次数的概率分布。每次试验只有两种可能的结果:成功(记为1)或失败(记为0)。成功的概率为p,失败的概率为1-p。
二项分布的概率质量函数可以表示为:
二项分布在实际中的应用非常广泛。举例来说,在医学研究中,我们可以利用二项分布来计算患者接受某种治疗的成功率。在工程领域中,我们可以使用二项分布来评估产品在生产过程中的合格率。这些都是二项分布在实际应用中的重要例子
泊松分布的概率密度函数是:
指数分布的概率密度函数为:
伽玛分布的概率密度函数为:
贝塔分布(Betadistribution)是一种连续型概率分布,用于描述一组数值中成功次数的概率分布。它具有两个参数,分别表示成功概率的期望值(mean)和标准差(standarddeviation)。
贝塔分布的概率密度函数如下:
在这其中,x代表成功的次数,α和β分别代表分布的形状参数
贝塔分布在许多实际问题中都有应用。例如,在基因编辑中,研究人员可能会使用贝塔分布来预测基因编辑技术成功编辑某个目标位点的概率。在金融领域,贝塔分布可以用于描述资产价格的波动性,或者用于计算投资组合的预期收益
均匀分布是一种概率分布,用于描述一组数值在某个区间内均匀地分布。均匀分布有两种类型:离散均匀分布和连续均匀分布。
离散均匀分布:当一个离散随机变量X满足以下概率分布时:P(X=k)=k/(n+1),其中k为非负整数,n为区间内的整数,我们称X服从离散均匀分布。连续均匀分布:当一个连续随机变量X的概率密度函数为f(x)=1/(b-a)时,我们称X服从连续均匀分布,其中a和b为区间的两个端点
均匀分布的特点是,在给定的区间内,每个数值都有相同的机会出现。例如,抛一枚公正的硬币,正面和反面出现的概率都是1/2,这就是一种均匀分布。
对数正态分布(Log-normaldistribution)是一种连续型概率分布,它的特点是随机变量的对数服从正态分布。换句话说,如果一个随机变量X的对数ln(X)服从正态分布,那么这个随机变量X就服从对数正态分布。
对数正态分布的概率密度函数可以表示为:
其中,μ是对数正态分布的均值,σ是对数正态分布的标准差。
对数正态分布在许多实际应用中都有重要意义,例如金融领域(股票价格、收益率等)、生物学(生长速率等)、经济学(消费支出等)等。
T分布,是一种连续型概率分布,主要用于小样本情况下描述均值的分布。t分布与正态分布(Normaldistribution)类似,但它的尾部可以向左右延伸,取决于自由度(k)的大小。t分布广泛应用于统计推断,例如在假设检验中用于评估样本均值与总体均值之间的显著性差异。
t分布的期望和方差如下:
E(t)=0
要重写的内容是:Var(t)=k/(k-1)
t分布的自由度(k)表示样本大小(n)和总体标准差之间的关系。当k>30时,t分布接近正态分布;当k接近1时,t分布变为柯西分布(Cauchy分布)
在实际应用中,当样本量较大(n>30)时,可以使用正态分布进行假设检验,这时可以利用z统计量建立置信区间。然而,当样本量较小(n
Weibull分布(Weibulldistribution)是一种连续型概率分布。
Weibull分布的概率密度函数为:
在韦伯分布中,x被视为随机变量,λ则被称为比例参数(scale),k则是形状参数(shape)。就韦伯分布而言,当k等于1时,它就是指数分布。如果λ等于1的话,这就是最小化的韦伯分布