解一元一次方程教案(精选5篇)

(一)知识教学点:能灵活运用直接开平方法、配方法、公式法及因式分解法解一元二次方程.能够根据一元二次方程的结构特点,灵活择其简单的方法.

(二)能力训练点:通过比较、分析、综合,培养学生分析问题解决问题的能力.

(三)德育渗透点:通过知识之间的相互联系,培养学生用联系和发展的眼光分析问题,解决问题,树立转化的思想方法.

二、教学重点、难点和疑点

1.教学重点:熟练掌握用公式法解一元二次方程.

2.教学难点:用配方法解一元二次方程.

3.教学疑点:对“选择恰当的方法解一元二次方程”中“恰当”二字的理解.

三、教学步骤

(一)明确目标

解一元二次方程有四种方法,四种方法各有千秋,究竟选择什么方法最适当是本节课的目标.在熟练掌握各种方法的前提下,以针对一元二次方程的特点选择恰当的方法或者说是用简单的方法解一元二次方程是本节课的目的.

(二)整体感知

一元二次方程是通过直接开平方法及因式分解法将方程进行转化,达到降次的目的.这种转化的思想方法是将高次方程低次化经常采取的.是解高次方程中的重要的思想方法.

在一元二次方程的解法中,平方根的概念为直接开平方法的引入奠定了基础,符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的方程均适合用直接开平方法.直接开平方法为配方法奠定了基础,利用配方法可推导出一元二次方程的求根公式.配方法和公式法都是解一元二次方程的通法.后者较前者简单.但没有配方法就没有公式法.公式法是解一元二次方程最常用的方法.因式分解的方法是独立的一种方法.它和前三种方法没有任何联系,但蕴含的基本思想和直接开平方法一样,即由高次向低次转化的一种基本思想方法.方程的左边易分解,而右边为零的题目,均用因式分解法较简单.

(三)重点、难点的学习与目标完成过程

1.复习提问

(1)将下列方程化成一元二次方程的一般形式,并指出二次项系数,一次项系数及常数项.

(1)3x2=x+4;

(2)(2x+1)(4x-2)=(2x-1)2+2;

(3)(x+3)(x-4)=-6;

(4)(x+1)2-2(x-1)=6x-5.

此组练习尽量让学生眼看、心算、口答,使学生练习眼、心、口的配合.

(2)解一元二次方程都学过哪些方法?说明这几种方法的联系及其特点.

直接开平方法:适合于解形如(ax+b)2=c(a、b、c为常数,a≠0c≥0)的方程,是配方法的基础.

配方法:是解一元二次方程的通法,是公式法的基础,没有配方法就没有公式法.

公式法:是解一元二次方程的通法,较配方法简单,是解一元二次方程最常用的方法.

因式分解法:是最简单的解一元二次方程的方法,但只适用于左边易分解而右边是零的一元二次方程.

直接开平方法与因式分解法都蕴含着由高次向低次转化的思想方法.

2.练习1.用直接开平方法解方程.

(1)(x-5)2=36;(2)(x-a)2=(a+b)2;

此组练习,学生板演、笔答、评价.切忌不要犯如下错误

①不是x-a=a+b而是x-a=±(a+b);

练习2.用配方法解方程.

(1)x2-10x-11=0;(2)ax2+bx+c=0(a≠0)

配方法是解决代数问题的一大方法,用此法解方程尽管有点麻烦,但由此法推导出的求根公式,则是解一元二次方程最通用也是最常用的方法.

此练习的第2题注意以下两点:

(1)求解过程的严密性和严谨性.

(2)需分b2-4ac≥0及b2-4ac<0的两种情况的讨论.

此2题学生板演、练习、评价,教师引导,渗透.

练习3.用公式法解一元二次方程

练习4.用因式分解法解一元二次方程

(1)x2-3x+2=0;(2)3x(x-1)+2x=2;

解(2)原方程可变形为3x(x-1)+2(x-1)=0,

(x-1)(3x+2)=0,

x-1=0或3x+2=0.

如果将括号展开,重新整理,再用因式分解法则比较麻烦.

练习5.x取什么数时,3x2+6x-8的值和2x2-1的值相等.

解:由题意得3x2+6x-8=2x2-1.

变形为x2+6x-7=0.

(x+7)(x-1)=0.

x+7=0或x-1=0.

即x1=-7,x2=1.

当x=-7,x=1时,3x2+6x-8的值和2x2-1的值相等.

学生笔答、板演、评价,教师引导,强调书写步骤.

练习6.选择恰当的方法解下列方程

(1)选择直接开平方法比较简单,但也可以选用因式分解法.

(2)选择因式分解法较简单.

学生笔答、板演、老师渗透,点拨.

(四)总结、扩展

(1)在一元二次方程的解法中,公式法是最主要的,最通用的方法.因式分解法对解某些一元二次方程是最简单的方法.在解一元二次方程时,应据方程的结构特点,选择恰当的方法去解.

(2)直接开平方法与因式分解法中都蕴含着由二次方程向一次方程转化的思想方法.由高次方程向低次方程的转化是解高次方程的思想方法.

四、布置作业

1.教材P.21中B1、2.

2.解关于x的方程.

(1)x2-2ax+a2-b2=0,

(2)x2+2(p-q)x-4pq=0.

4.(1)解方程

①(3x+2)2=3(x+2);

五、板书设计

12.2用因式分解法解一元二次方程(二)

四种方法练习1……练习2……

1.直接开平方法…………

2.配方法

3.公式法

4.因式分解法

六、作业参考答案

1.教材P.2B.1(1)x1=0,x2=;(2)x1=,x2=;

2:1秒

2.(1)解:原方程可变形为[x-(a+b)][x-(a-b)]=0.

x-(a+b)=0或x-(a-b)=0.

即x1=a+b,x2=a-b.

(2)解:原方程可变形为(x+2p)(x-2q)=0.

x+2p=0或x-2q=0.

即x1=-2p,x2=2q.

原方程可化为5x2+54x-107=0.

(2)解①m2-3m+2≠0..

m1≠1,m2≠2.

当m1≠1且m2≠2时,此方程是一元二次方程.

(一)知识教学点:1.正确理解并会运用配方法将形如x2+px+q=0方程变形为(x+m)2=n(n≥0)类型.2.会用配方法解形如ax2+bx+c=0(a≠0)中的数字系数的一元二次方程.3.了解新、旧知识的内在联系及彼此的作用.

(二)能力训练点:培养学生准确、快速的计算能力,严谨的逻辑推理能力以及观察、比较、分析问题的能力.

(三)德育渗透点:通过本节课,继续体会由未知向已知转化的思想方法,渗透配方法是解决某些代数问题的一个很重要的方法.

1.教学重点:用配方法解一元二次方程.

2.教学难点:正确理解把x2+ax型的代数式配成完全平方式——将代数式x2+ax加上一次项系数一半的平方转化成完全平方式.

3.教学疑点:配方法可以解决许多代数问题,例如:因式分解,将一个代数式配成完全平方式等等,本节课传授的是用配方法解一元二次方程.

学习了直接开平方法解一元二次方程,对形如(ax+b)2=c(a,b,c为常数,a≠0,c≥0)的一元二次方程便会求解.如果给出一元二次方程x2+2x=3,那么怎样求解呢?这就是我们本节课所要研究的问题.将x2+2x=3转化为(ax+b)2=c型是我们本节课一个重要的突破点,攻克此难关,方程的求解问题便迎刃而解了.

本节课在直接开平方法的基础上引进了配方法,实现由未知向已知的转化.直接开平方法在本节课中起到了一个承上启下的作用.它为配方法的引入做了很好的铺垫.如果说平方根的概念为一元二次方程解法的引进立下了汗马功劳,那么可以说直接开平方法为其他方法的引进作了坚实的铺垫.

配方法是初中代数中解决某些代数问题的一个常用方法,方法的实质是将代数式x2+ax配成一个完全平方式,它的理论依据是完全平方公式a2±2ab+b2=(a±b)2.

(三)重点、难点的学习及目标完成过程

(1)完全平方公式a2±2ab+b2=(a±b)2.

(2)填空:

1)x2-2x+()=[x+()]2

2)x2+6x+()=[x-()]2

2.引例:将方程x2-2x-3=0化为(x-m)2=n的形式,指出m,n分别是多少?

解:移项,得x2-2x=3.

配方,得x2-2x+12=3+12.

(x-1)2=4.

m=-1,n=4.

对于x2+ax型的代数式,只需再加上一次项系数一半的平方即可完成上述转化工作.

练习:把下列方程化为(x+m)2=n的形式

上述练习,深化配方的过程,为配方法的引入作铺垫.

3.例1解方程x2-4x-2=0.

解:移项,得x2-4x=2……第一步

配方,得x2-4x+(-2)2=2+(-2)2……第二步

(x-2)2=6.

教师引导、板演,学生回答.分析解方程的步骤,第一步是移项,将含有未知数的项移到方程的一边,不含有未知数的项移到方程的另一边.第二步是配方,方程的两边同时加上二次项系数一半的平方,进行这一步的理论依据是等式的基本性质和完全平方公式a2±2ab+b2=(a±b)2,第三步是用直接开平方法求解.此时,向学生点明:这种解一元二次方程的方法称为配方法.

学生练习、板演、评价,深刻体会配方法的步骤,通过配方,方程进行了形式上的转化,并且体会为什么先学直接开平方法,它是配方法的基础,要注意体会推理的严谨性、步骤的完整性,刚开始配方的过程要细,不要跳步,避免出错.

例2解方程:2x2+3=5x.

解:移项,得:2x2-5x+3=0,

例2中方程的特点和例1不同的是,例2的二次项系数不是1.因此要想配方,必须化二次项系数为1.对一元二次方程ax2+bx+c=0用配方法求解的步骤是:

第一步:化二次项系数为1;

第二步:移项;

第三步:配方;

第四步:用直接开平方法求解.

练习:1.P.12中2(3)(4).

2.解方程(1)6x-x2=63(2)9x2-6x+1=0.

学生练习板演,师生共同评价.对于练习2(2)解方程9x2+6x+1=0.

解法(二)原方程可整理为(3x-1)2=0.

3x-1=0.

比较上面两种方法,让学生体会方法(一)是通法,有时用起来麻烦.方法(二)是据方程的特点所采用的特殊的方法,较方法(一)简捷,明快.可告诫学生学习不要机械死板,在熟练掌握通法的基础上,据方程的结构特点灵活地选择简单的方法,培养学生灵活运用的能力.

通过以上练习,让学生能悟出配方法可以解任意结构特点的一元二次方程,它是解一元二次方程的通法.

引导学生从所学知识、方法上进行小结.

1.本节课学习用配方法解一元二次方程,其步骤如下:

(1)化二次项系数为1.

(2)移项,使方程左边为二次项,一次项,右边为常数项.

(3)配方.依据等式的基本性质和完全平方公式,在方程的左右两边同时加上一次项系数一半的平方.

(4)用直接开平方法求解.

配方法的关键步骤是配方.配方法是解一元二次方程的通法.

2.配方法的理论依据是完全平方公式:a2±2ab+b2=(a±b)2,配方法以直接开平方法为基础.

3.要学会通过观察、比较、分析去发现新旧知识的联系,以旧引新,学会化未知为已知的转化思想方法,增强学生的创新意识.

教材P.15中3.

12.1用公式解一元二次方程(三)

1.配方法的理论依据例1解方程x2-4x-2=0

a2±2ab+b2=(a±b)2解:……

2.配方法的步骤……

(1)……例2解方程2x2-3=5x

(2)……解:……

(3)…………

(4)……练习1……

练习2……

(1)x1=-2,x2=-4

(2)x1=-6,x2=2

(3)x1=4,x2=6

(一)知识教学点

会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理.,全国公务员共同天地

(二)能力训练点

培养学生分析问题、解决问题的能力.

(三)德育渗透点

1.体会代数方法的优越性.

2.向学生进一步渗透把未知转化为已知的思想.

3.向学生进行理论联系实际的教育.

(四)美育渗透点

学习列方程组解应用题时,若能在错综复杂的关系中抓住问题的关键,就能迅速通过相等求解,从而渗透解题的简捷性的数学美,以及解题的奇异美.

二、学法引导

1.教学方法:尝试指导法、观察法、讲练结合法.

2.学生学法:本节主要学习列二元一次方程组和三元一次方程组解应用题的方法,尤其重点要掌握列出二元一次方程组解应用题,其分析方法和解题步骤都与前面学过的列一元一次方程解应用题类似,可在学习中进行类比从而加强理解.

三、重点·难点·疑点及解决办法

(一)重点与难点

根据简单应用题的题意列出二元一次方程组.

(二)疑点

正确找出表示应用题全部含义的两个相等关系,并把它们表示成两个方程.

(三)解决办法

通过反复读题、审题,分析出题目中存在的两个相等关系是列方程组的关键.

四、课时安排

一课时.

五、教学具学具准备

投影仪、自制胶片.

六、师生互动活动设计

1.通过提问,复习列一元一次方程解应用题的步骤,尤其相等关系的寻找问题.

2.师生共同探索新知识—列二元一次方程组解应用题的一般步骤.

3.通过反馈练习,检查学生掌握知识的情况,以便有针对性地进行差漏补缺.

七、教学步骤

本节课主要学习列二元一次方程组解应用题.

列二元一次方程组解应用题的关键在于通过准确的审题迅速寻找出两个正确的相等关系来列二元一次方程组.

(三)教学过程

1.创设情境、导入新课

(1)根据下列条件设适当的未知数,列出二元一次方程.

①甲、乙两数的和是10.

②甲地的人数比乙地的人数的2倍还多70.

③买4支铅笔、3支圆珠笔共花了1.6元.

(2)甲、乙两工人师傅制作某种工件,每天共制作12件.已知甲每天比乙多制作2件,求甲、乙每人每天可制作几件?

①列出一元一次方程和二元一次方程组解题.

②比较一下,两种方法得到的结果是否相同?是列一元一次方程容易,还是列二元一次方程组容易?

学生活动:第(1)题口答,第(2)题在练习本上完成.

【教法说明】第(1)题为根据相等关系列二元一次方程打下了基础;第(2)题通过两种解法的比较,让学生体会列方程组的优越性,这样引入课题,可以引起学生学习新知识的兴趣.

2.探索新知,讲授新课

例1小华买了80分与2元的邮票共16枚,共花了18元8角,80分与2元的邮票各买了多少枚?

分析:(1)题中有几个未知数?分别是什么?

(2)题中有几个相等关系?分别是什么?

学生活动:观察、分析后回答.,全国公务员共同天地

未知数:80分邮票枚数与2元的邮票枚数.

相等关系(1)80分邮票枚数+2元邮票枚数=总枚数.

(2)80分邮票总价+2元邮票总价=全部邮票总价.

学生活动:设未知数、根据相等关系列方程.

解:设共买枚80分邮票,枚2元邮票,根据题意得

解这个方程组,得

答:80分邮票买了11枚,2元邮票买了5枚.

强调:(1)选定几个未知数,根据问题中的条件找几个相等关系,这几个相等关系正好表示了应用题的全部含义.

(2)列方程组解应用题时,解方程组过程在练习本上完成.

(3)得到结果后,要检验是不是原方程组的解,是不是符合应用题的实际意义,然后再写答句.

反馈练习:P351,2.(只列不解)

仿照刚才分析例1的方法,分析问题.

学生活动:拟题、自由提问,其他学生抢答.

教师根据学生的拟题板书.

解题过程由学生完成,一个学生板演.

解:设平均做1个小狗用分,做1个小汽车有分,根据题意,得

答:平均做一个小狗用17分,做1个小汽车用22分.

【教法说明】例2用拟题训练的方法让学生自己去尝试分析问题,不但能活跃课堂气氛,而且能促进学生积极思维,培养学生分析问题、解决问题的能力.

反馈练习:P353,4.

学生活动:口答、设未知数、列方程组.

3.变式训练,培养能力

用白铁皮做罐头盒,每张铁皮可制盒身16个或制盒底43个,一个盒身与两个盒底配成一套罐头盒,现有150张白铁皮,用多少张制盒身、多少张制盒底,可以正好制成整套罐头盒?

分析:此题的相等关系不明显,应启发学生认真思考,找到第二个相等关系.

相等关系:(1)制盒身铁皮张数+制盒底铁皮张数=150张.

(2)盒底总数=2×盒身总数.

解:设用张铁皮制盒身,张铁皮制盒底,可以制成整套缺头盒.根据题意,得

我们这节课学习了二元一次方程组的应用,你能简单归纳出列二元一次方程组解应用题的步骤吗?

学生发言后,老师适当补充、纠正.

八、布置作业

(一)必做题:P391,2,3.

(二)选做题:P41B组2.

(三)补充题:给定两数5和3,编一道列出二元一次方程组求解的应用题,使得这个方程组的解就是给定的两数.

参考答案

(一)1.到甲地130人,到乙地70人.

2.有28个队参加篮球赛,20个队参加排球赛.

3.长38㎝,宽16㎝.

(二)解:设一辆大车、一辆小车一次分别可运货吨、吨,根据题意,得

解得

4×3+2.5×5=24.5(吨)

九、板书设计

投影幕

例1例2练习

关键词:初中;数学;概念认知能力培养

一、初中概念认知能力培养面临的几个问题

1.初中生的抽象思维能力不强,理解不了

数学概念的抽象性是一个共性,也是影响初中生概念认知能力的关键问题。在小学阶段接触的数学概念都非常简单,可以通过直观的数学概念和教学案例演示来引导思维,引导学生理解。学生在小学没有接触过抽象的概念,而在初中,贸然接触抽象性的概念,学生的思维观念还没有适应,不能从直观学习中改换思路,就会遭遇抽象思维能力不强,理解缓慢,理解能力弱的问题,影响了概念认知能力培养的进度。

2.初中生的学习兴趣不浓厚,主动性差

初中数学课堂普遍不受学生的欢迎,其主要原因在于学生的学习压力、学习观念、学习习惯尚未养成。在遭遇较为艰深难以理解的数学问题之后,学生的学习兴趣更加被动、消极,上课不认真听课,课后不注意复习,对数学概念的理解混乱,这种情况普遍存在。在初中数学课堂上,学生的学习动力严重不足,被动接受数学教育,影响了抽象概念的吸收理解,容易引起后续概念混乱和成绩差等一系列消极问题。

3.教师对抽象概念的解读能力不强,缺乏有效性

初中数学老师在教学方法上的单一和枯燥性问题较为突出,这导致在进行概念认知能力培养的过程中,对抽象的数学概念缺乏深入和有效的解读,学生依然听的云里雾里,不知所云。尤其是传统的课堂上通过反复做题来提高数学成绩的做法,有一定道理但并不全面。数学老师需要考虑更多新的尝试来提高对抽象数学概念的解读能力。

二、初中概念认知能力培养的几个尝试

1.培养学生的数学学习兴趣与观念

初中生普遍尚未接触到严峻的就业形势和升学考试的压力,他们在进行数学学习的时候缺乏学习动力,对课堂规范也缺乏正确的认知。要做好概念认知能力的培养,首先需要学生对数学课堂有一个正确的认知,教师要注意灌输一定的数学学习的压力,灌输关于数学概念认知重要性的内容,让学生能够在一定的紧迫感下积极主动的进行数学概念的学习,配合老师做好概念认知能力培养的尝试。

2.学生逻辑思维和联想能力的训练

抽象的数学概念认知能力培训,需要以提高学生的联想能力和逻辑思维能力为重点。比如二元一次方程组的解题过程,每一个“元”的概念,每一个解题的思路和步骤,每一个步骤之中的逻辑思维都需要在课堂上进行深入的讲解。考虑到学生的主动思维能力的培养,不妨在老师讲解一遍之后,让学生自己深入的解析一遍,以解题的形式罗列出来。

3.教师的教学观念要大胆、创新,有所突破

三、总结

在初中数学中进行数学概念认知能力的培养是一个新的尝试,有很多问题需要解决。这就要求数学老师尽量突破原有的教学理念,尝试新的方法,针对性的解决数学概念认知培训中存在的问题,这样才能促进学生对数学概念认知能力的提高。

参考文献:

[1]伍春兰,吴京涛,王静伟.北京市初中生数学学习情况的调查与分析[J].北京教育学院学报(自然科学版).2008(01)

一、学生情况分析

二、教材及课标分析

第一章有理数

1、通过实际例子,感受引入负数的必要性。会用正负数表示实际问题中的数量。

2、理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。通过上述内容的学习,体会从数与形两方面考虑问题的方法。

3、掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。

4、理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示。了解近似数与有效数字的概念。

第二章整式的加减

1、理解并掌握单项式、多项式、整式等等概念,弄清它们之间的区别与联系。

2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解为的运算律和运算性质在整式的加减运算中仍然成立。、

4、能分析实际问题中的数量关系,并列出整式表示。体会用字母表示数后,从算术到代数的进步。

第三章一元一次方程

2、通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。

3、了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。

4、能够找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系,体会建立数学模型的思想。

5、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。

第四章图形认识初步

1、通过大量的实例,体验、感受和认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特征,能识别这些几何体,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。

2、能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型;通过丰富的实例,进一步认识点、线、面、体,理解它们之间的关系。在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。

3.进一步认识直线、射线、线段的概念,掌握它们的表示方法;结合实例,了解两点确定一条直线和两点之间线段最短的性质,理解两点之间的距离的含义;会比较线段的大小,理解线段的和差及线段的中点的概念,会画一条线段等于已知线段。

4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,并会进行简单的换算;了解角的平分线的概念,了解余角和补角的概念,知道等角的补角相等等角的余角相等的性质质,会画一个角等于已知角(尺规作图)。

5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图。

6.初步体验图形是描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义。

7.激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意。

三、学生学习习惯与兴趣的培养

针对以往学生中出现的学习习惯不良的现象,本学期我们还要抓好每个学生尤其是新生和学困生的学习常规,培养他们养成良好的学习习惯和学习兴趣,这也是我们进一步转化学困生,控制学生流失的根本保证。

1、指导学生养成预习的习惯。

预习是上好新课、取得高效率的学习成果的基础。基本要求:①及时预习。根据教学进度和教材的难易程度,适当地提前预习新课。②善于预习。依据知识基础、教材内容和学科特点等,选择适合自己实际情况的预习方法。要记录好新教材中的重点问题和不懂的问题,以便上课时加以注意。

2、指导并监督学生养成良好的听课习惯。

3、指导学生养成复习的习惯。

复习是学生自己或在教师指导下,加深和巩固对所学知识的理解和记忆,检查学习效果,防止知识遗忘,提高记忆能力和自学能力,为下一次新课的学习打好知识基础的重要过程。复习的基本要求是:①要及时复习。复习要及时,每天复习以巩固当天所学的知识。一个单元、一个章节后,也要及时复习,及时巩固知识。②复习要有针对性,要抓住要点,对一些重要的基本概念和基础知识,通过理解加深记忆。③复习要注意归纳总结,使知识更加条理化、层次化。

4、培养学生养成认真、及时完成作业的习惯。

5、培养学生良好的学习兴趣

爱因斯坦曾说过:兴趣是最好的老师。学生对知识感兴趣,才能主动去接触知识,从而发现知识,去探索知识。那么怎样培养学生的学习兴趣呢,我认为应该在课堂教学中做到以下几点:

(1)导课新颖,引起兴趣

良好的开端,是成功的一半。如何诱发学生产生与学习内容、学习活动本身相联系的直接学习兴趣,使学生从新课伊始产生强烈的求知欲望是至关重要的。

(2)明确目的,产生兴趣

(3)创设情景,诱发兴趣

在教学中,适时地创设和谐、愉悦的求知情景,激发学生乐学、爱学数学的内驱力,诱发学生学习兴趣。

(4)动手操作,促进兴趣

动手操作活动是一种主动学习活动,它具有具体形象,易于促进兴趣,便于建立表象,有利于理解知识等特点。它需要学生多种感官参与活动,动脑思考,动口表达,并需要学生独立、自觉地运用知识解决问题。总之,就是使学生在愉快的操作活动中掌握抽象的数学知识,既发展学生的思维,又提高学生的学习兴趣。比看教师拼、摆,听师讲解获得的知识牢固得多,既能提高学生的学习兴趣,又能发展学生的数学潜能。

(5)寻求规律,发展兴趣

数学知识的特点之一就是具有高度的抽象性、严谨性,所以数学教学必须重视培养学生的分析、推理能力,突出数学知识的特点及规律,以直接或间接的形式引导学生发现规律、掌握规律,才能使学生越学越有兴趣,从而正确运用规律解决问题。

四、具体措施

1、认真学习教育教学理论,落实课标理念,让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。

2、把握好与前两个阶段的衔接,把握好教学要求,不要随意拨高。

4、把握好图形初步认识的有关内容的要求。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练;利用好选学内容。

5、适当加强练习,加深对基本知识和基本技能的掌握,但不一味追求练习的数量。

7、重视现代信息技术的运用,着重利用计算器,丰富学习资源。

8、注重对学生进行学法指导。读法指导、听法指导、思法指导、写法指导、记法指导。

五、自我提高

首先,在工作中不断积累经验,并及时形成材料,完成自己的教研课题。在备课、讲课,还是在讲评练习中,发现问题及闪光点要及时进行小结。有机会多到外校去听课,学习其优点及新理念。经常与教研员及三中、安林的老师联系,互相交流信息。

其次,认真学习信息技术,不断提高自身业务素质。现在网络资源非常丰富,应用多媒体教学,对学生进行知识的传授,激发和培养学生的学习兴趣,都有很大的帮助。同时,也能激励自己刻苦钻研业务,不断学习新知识,探索教育教学规律,改进教育教学方法,提高教育、教学和科研水平。

注意扬长避短,坚持岗位练功。热爱学生,热爱教育事业,必然落实于热爱学生。爱学生成长中的每一个闪光点,理解信任他们,并严格要求他们,勤奋学习。

THE END
1.七年级上学期,解一元一次方程的易错点分析,不要再犯同样的错误解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,在每一步中都有易错点,我们在解题时要特别注意,不要再犯同样的错误。漏乘不含分母的项 分析:第一步去分母时,方程左右两边同时乘以6,但是右边单独的数字“2”忘记乘了,这是在解方程时比较容易犯的一种错误,无论是单独的数字还是https://baijiahao.baidu.com/s?id=1716559300565499918&wfr=spider&for=pc
2.一元一次方程怎么解[解一元一次方程的基本步骤]方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程 一元一次方程 只含有一个未知数、未知数的最高次数为1的等式叫做一元一次方程(linear equation in one unknown);使方程左右两边的值相等的未知数的值,叫做方程的解(solution) 基本信息 标准形式 一元一次方程的标准形式(即全部一元一次方程https://m.renrendoc.com/paper/184939451.html
3.解一元一次方程的基本步骤有哪些(共五步请用文字表达)解答一 举报 1.去分母 2.去括号 3.移项 4.合并同类项 5.等式两边同时除以未知数前面的系数作为初学者要记住这几步骤,以后熟练就不用严格按照这样的步骤啦, 解析看不懂?免费查看同类题视频解析查看解答 更多答案(1) 相似问题 解一元一次方程的步骤是什么? 解一元一次不等式的一般步骤是:①_,②_,③_, ④https://www.zybang.com/question/39d83a123d8b2edb46af9f5f2415da96.html
4.解一元一次方程的一般步骤琼姐课堂琼姐课堂解一元一次方程的一般步骤 0播放 什么是方程的解 2播放 一元一次方程的概念 0播放 方程的概念 0播放 三角形的外角定理 17播放 三角形的角度关系 150播放 三角形的面积求解 142播放 三角形稳定性的实际应用 9播放 三角形的高,中线,角平分线的判断 13播放 三角形的三边关系与绝对值结合 0播放 三角形三边关系https://www.bilibili.com/medialist/play/3546657887094882
5.用javascript解一元一次方程mob64ca12dcc794的技术博客什么是一元一次方程? 一元一次方程是一个形如ax + b = 0的方程,其中a和b是已知的常数,x是未知数。我们的目标是解出x的值,使得等式成立。 解一元一次方程的步骤 解一元一次方程的一般步骤如下: 将方程转化为标准形式ax + b = 0 使用数学公式求解x的值 https://blog.51cto.com/u_16213350/9565960
6.初一数学一元一次方程的解法有哪些详细步骤解析很多初一学生都在问一元一次方程的解题步骤,下面是初三网小编为大家整理的,仅供参考。 1解一元一次方程的基本步骤 1.去分母:在方程两边都乘以各分母的最小公倍数; 2.去括号:先去小括号,再去中括号,最后去大括号; 3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边; http://www.chusan.com/zhongkao/37776.html
7.解一元一次方程的一般步骤,学会这五步,解方程不愁2000集全可分享 爆笑初中数学动画 解一元一次方程 详细的数学讲解 安妮妮老师 1.2万16 一元一次方程的解法(提高篇) 高端学术_bili 15.5万2044 小学数学 五年级上册数学解方程,学会看整体,其实并不难,你学会了吗? 教育小能手 2.1万25 初一数学:这题一元一次方程怎么解?视频有详细解题步骤 https://b23.tv/g7IqBe
8.初中数学知识点丨7解一元一次方程↑ 一元一次方程是只含有一个未知数,且未知数次数为1,等式两边都是整式的式子。 2 移项 ↑ 某项从一边变号移到另一边叫做移项。 3 一般步骤 ↑ 解一元一次方程的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1 ↑ 趁热打铁做个小练习 https://www.163.com/dy/article/D4RBV2SO0516QR9V.html
9.解一元一次方程的一般步骤第一课时优质课ID:3468910包含:视频、PPT课件、教案学币:20 立即下载 视频时长:00:43:13 课件预览 立即下载加入资源篮 开通VIP会员 低至3折优惠 付费资料下载券免费资料下载10份/天专享VIP会员资源包 立即开通 普通用户每天可下载1份免费资料 开通VIP会员 免费份数提升10倍 https://ekw.cn/kc/3468910.html
10.一元一次方程解题步骤解法技巧怎么解一元一次方程的应用一元一次方程解题步骤解法技巧怎么解_一元一次方程的应用一元一次方程的应用" 许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问在学习一元一次方程的数字问题前,首先要搞清楚数的表示方法:一个三位数,若http://3g.ychedu.com/SXCS/SXJA/QLJJA/597110.html
11.一元一次方程数学教案14篇1、知识与技能:会解含分母的一元一次方程,掌握解一元一次方程的基本步骤和方法,能根据方程的特点灵活地选择解法。 2、过程与方法:经历一元一次方程一般解法的探究过程,理解等式基本性质在解方程中的作用,学会通过观察,结合方程的特点选择合理的思考方向进行新知识探索。 https://www.fwsir.com/jiaoan/html/jiaoan_20230223092915_2429975.html
12.一元一次方程6种解法是什么只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。 一元一次方程必须同时满足4个条件: (1)它是等式。 (2)分母中不含有未知数。 (3)未知数最高次项为1。 (4)含未知数的项的系数不为0。 解一元一次方程的一般步骤大致可分为五步: http://www.91kaixue.com/ask/28555.html
13.一元一次方程教案1.什么是一元一次方程? 在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1. 2.解一元一次方程的步骤是什么? 答:(1)去分母、去括号. (2)移项——未知项移到等号一边常数项移到等号另一边. 注意:移项要变号. https://mip.jy135.com/jiaoan/1173798.html
14.教学设计解一元一次方程——去分母11篇(全文)通过上节课学习后,学生已经掌握了用去括号、移项、合并同类项、把系数化为1这四个步骤解一元一次方程。 接下来这一节课,我们要重点讨论是; ①解方程中的“去分母”, ②根据实际问题列方程。这样我们就掌握了解一元一次方程一般都采用的五步变形方法。 https://www.99xueshu.com/w/filetjfhmyf8.html
15.七年级《解一元一次方程——移项》教学设计(通用8篇)作为一名优秀的教育工作者,时常要开展教学设计的准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计应该怎么写才好呢?以下是小编帮大家整理的七年级《解一元一次方程——移项》教学设计,欢迎阅读与收藏。 https://xiaoxue.ruiwen.com/jiaoxuesheji/163593.html
16.一元一次方程与应用中考数学题汇总7、解一元一次方程的步骤: ①去( ) ;②去( );③移( );④合并( );⑤系数化为1。 (2)解方程的基本思想就是应用等式的基本性质进行转化,要注意: ①方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程不同解; ②去分母时,不要漏乘没有分母的项; https://mip.oh100.com/kaoshi/shuxueshiti/312942.html