CRISPR/Cas9设计工具,让基因编辑不再高冷!

CRISPR/Cas9已经成为最常用的基因编辑系统。CRISPR/Cas9包括2部分:Cas9核酸内切酶和sgRNA(singleguideRNA),sgRNA由天然的tracrRNA(transactivatingcrRNA)和crRNA(CRISPRRNA)融合而来。

使用CRISPR/Cas9工具进行基因敲除等基因编辑时,首先要进行sgRNA设计。理论上只要根据PAM序列(SpCas9识别的最佳PAM是5-NGG-3)对所需靶向的物种基因组进行扫描,即可设计所有可能的sgRNA。但如何设计合理有效的sgRNA则需要谨慎考虑,因为这将决定其基因编辑结果。

图1CRISPR/Cas9系统[2]

随着近年来研究的不断深入,研究者对CRISPR/Cas9系统机制已有非常全面的了解。这些研究结果也促进了大量的sgRNA设计工具的出现[1,3],从而给研究者提供了快速、高效的sgRNA设计选择。

sgRNA的5’包括20nt的protospacer序列,该序列和靶向DNA序列互补以实现双链切割;其3’则为固定的一段具有茎环(stem-loop)结构的支架序列(scaffoldsequence),该序列和Cas9蛋白带正电的凹槽相互作用形成核糖核蛋白复合物(ribonucleoproteincomplex,RNP)。一般sgRNA序列大多指20nt的protospacer序列。

大部分的sgRNA设计工具,除展示设计序列外,主要包括效率和特异性评价,并给出参考评价分值。而不同工具所基于的数据和算法,导致给出特异性和效率结果可能不同。由于sgRNA特异性主要取决于是否存在潜在的错配序列,不同工具间结果一致性往往较高;但是对于效率预测,目前并没有非常成熟的预测工具,研究者使用时需要谨慎参考。

在工具设计页面上,不同的工具偏重点不同。很多工具提供不同的物种基因组序列,可使用基因ID直接获得sgRNA;或者通过输入候选序列进行sgRNA设计。并且大都能提供多种CRISPR/Cas系统以供设计。

下面简单介绍几种sgRNA设计工具:

BroadInstituteGPP

较早出现的sgRNA在线设计工具,主要基于Doench等人2篇非常全面深入的sgRNA设计优化研究[4,5],以提供最高效率和最小脱靶可能的sgRNA设计。

该工具可应用于CRISPRko,CRISPRa(CRISPRactivation)和CRISPRi(CRISPRinterference)的sgRNA设计。提供包括SpCas9、SaCas9、AsCas9和enAsCas9四种CRISPR工具,以及human、mouse和rat三种物种基因组设计选择。该工具可以通过序列直接输入、基因ID和序列文件导入进行设计。大部分在线工具同时能提供在线展示和下载。但该工具设计结果需要下载,不提供在线的结果展示。

crispr.mit.edu(R.I.P)

曾经最为广泛使用的sgRNA设计工具(已于2017关闭)。提供WT和nickases两种Cas9的sgRNA设计。其优点是通过算法预测,对设计的sgRNA给出高、中、低三个可用等级便于使用者快速选择。其页面设计能快速浏览sgRNA的潜在脱靶位点,非常受研究者喜爱。

一个致命问题是该工具过滤了重复序列区域(repeatregion),这样如果你的sgRNA序列在基因组上存在多个重复,该工具并不能提醒。

Deskgen

随着CRISPR/Cas9的服务提供商的兴起,一些企业推出的sgRNA设计工具也非常具备使用性,并且这些工具往往贴合基因编辑设计,提供体验良好的可视化页面(比如:synthego,IDT,deskgen)。

其中DESKGENAI是通过人工智能算法的设计工具,属于较为主流的CRISPR基因组编辑设计商业工具。

CRISPRfinder

最大的特点和优势是可通过ensembl数据库的基因页面上显示sgRNA位置,提供基因组标注sgRNA浏览。便于快速的选定基因组的sgRNA序列。使用filter可快速选择不同等级的sgRNA显示。

crisprgold

该工具独特的提出一个关于sgRNA活性的见解[9,10],如果protospacer和scaffold序列存在一定的互补,则会产生bindingenergy,则可能影响正常的sgRNA二级结构,从而影响对靶序列的识别和结合,该工具将这一因素考虑在内,进而可以提供活性更高的sgRNA设计。。

DeepHF

通过测试人全基因组8万多个sgRNA的细胞系水平活性效率[6],在此数据基础上利用深度学习的方法建立了sgRNA效率的预测模型。与已有的模型相比,具有更准确的预测效果。

inDelphi和FORECasT

以往认为,CRISPR/Cas9在无模板的情况下,通过NHEJ产生的修复结果是随机的indel。但近年多篇研究发现,同一靶点的sgRNA序列存在比较一致的修复结果(indel),更进一步的发现,一部分的sgRNA的修复结果(theoutcomeofCRISPR-mediatedediting)是可以预测的[7,8]。inDelphi和FORECasT是最近出现的sgRNA无模板编辑预测工具,这对研究者准确设计和使用sgRNA,以得到预期基因编辑目的提供的进一步帮助。

当前众多的sgRNA设计工具几乎都是通过大规模的实验数据集和系统分析,建立相应的模型或算法。随着更多CRISPR/Cas9数据集的出现,以及结合人工智能和深度学习算法,后续有望出现更多大数据集合、算法优化的设计工具。

参考文献

[1]Cui,Yingbo,etal.ReviewofCRISPR/Cas9sgRNADesignTools.InterdisciplinarySciences:ComputationalLifeSciences10.2(2018):455-465.

[2]Graham,DanielB.,andDavidE.Root.ResourcesforthedesignofCRISPRgeneeditingexperiments.GenomeBiology16.1(2015):260-260.

[3]Lee,CiaranM.,TimothyH.Davis,andGangBao.ExaminationofCRISPR/Cas9designtoolsandtheeffectoftargetsiteaccessibilityonCas9activity.ExperimentalPhysiology103.4(2017):456-460.

[4]Doench,JohnG.,etal.OptimizedsgRNAdesigntomaximizeactivityandminimizeoff-targeteffectsofCRISPR-Cas9.NatureBiotechnology34.2(2016):184-191.

[5]Sanson,KendallR.,etal.OptimizedlibrariesforCRISPR-Cas9geneticscreenswithmultiplemodalities.NatureCommunications9.1(2018).

[6]Wang,Daqi,etal.OptimizedCRISPRguideRNAdesignfortwohigh-fidelityCas9variantsbydeeplearning.NatureCommunications10.1(2019):1-14.

[7]Shen,MaxW.,etal.Predictableandprecisetemplate-freeCRISPReditingofpathogenicvariants..Nature563.7733(2018):646-651.

[8]Chakrabarti,AnobM.,etal.Target-SpecificPrecisionofCRISPR-MediatedGenomeEditing.MolecularCell73.4(2019).

[9]Chu,VanTrung,etal.EfficientCRISPR-mediatedmutagenesisinprimaryimmunecellsusingCrispRGoldandaC57BL/6Cas9transgenicmouseline.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica113.44(2016):12514-12519.

[10]Graf,Robin,etal.sgRNASequenceMotifsBlockingEfficientCRISPR/Cas9-MediatedGeneEditing.CellReports26.5(2019).

THE END
1.NK510(NK510)自然杀伤细胞疗法、基因编辑 别名 BED-NK、NK 510、NK-510 靶点- 作用机制- 治疗领域 肿瘤消化系统疾病皮肤和肌肉骨骼疾病+ [3] 在研适应症 晚期胃癌非小细胞肺癌转移性骨肉瘤+ [4] 非在研适应症 急性髓性白血病肝癌 原研机构 珠海贝斯昂科科技有限责任公司 https://synapse.zhihuiya.com/drug/90a779bdae7143a7a07e2c59d537495b
2.领先的生命科学研究和临床诊断—Bio由Bio-Rad推出的Vericheck ddPCR 空壳率检测试剂盒!同时测量AAV空衣壳与完整衣壳的比例以及滴度。优化您的基因治疗研究和生产。 了解更多 新产品 ChemiDoc Go成像系统 线条流畅、设计紧凑、易于使用的ChemiDoc? Go成像系统,可实现快速图像采集、高灵敏度的化学发光及荧光蛋白印迹检测。 https://www.bio-rad.com/?country=CN&lang=zh&force=true
3.sgRNAs&基因编辑sgrna设计网站从图1可以看到,CRISPR locus由这些元件构成:一开始是个反式激活的RNA基因,编码特异的非编码RNA(trancrRNA,trans-activating CRISPR RNA,橙色矩形),与重复序列具有同源性,后面是各种cas基因(多种颜色的箭头),接着是CRISPR array(棕色的菱形是重复序列,彩色的是间隔)。而这些间隔序列是细菌从噬菌体DNA中获得的遗传元件https://blog.csdn.net/geekfocus/article/details/128613082
4.E.coli.CRISPRCas9基因编辑试剂盒(单靶点)(21页)E.coli.CRISPRCas9基因编辑试剂盒(单靶点).PDF,Cat. No.: CR3010-S E.coli. CRISPR/Cas9 基因编辑试剂盒 (单靶点) 产品简介: 本试剂盒采用 CRISPR/Cas9 系统对大肠杆菌基因组进行编辑。可以实现对基因的敲除、 敲入、点突变等。也可以同时对基因组的多个位点进行编辑。https://max.book118.com/html/2019/1125/7103131024002104.shtm
5.基因编辑ThermoFisherScientific我们开发了一套完整的基因编辑工具以帮助研究人员探寻和理解基因组如何影响表型,其中包括针对基因编辑工作流程中每个步骤的值得信赖的解决方案。设计用于精确切割、敲入和标记的 CRISPR-Cas9 系统或 TALEN 构建体,将其有效转染到细胞中,并验证基因型和表型结果。我们的已优化并经过验证的产品、方案和工具配合使用,消除了https://www.thermofisher.cn/cn/zh/home/life-science/genome-editing.html
6.利用CRISPR/Cas9基因编辑载体获得再生效率高的草莓新种质的方法及32.在gdr(https://www.rosaceae.org/)中查找森林草莓fvepils5基因的dna以及氨基酸序列(dna:2112bp,序列如seq id no.1所示,fvepils5基因编码的氨基酸序列如seq id no.2所示)。根据森林草莓fvepils5 dna序列,通过在线网站 crispr-p(http://cbi.hzau.edu.cn/crispr/)设计包含目的基因靶点的sgrna序列(如seq idhttps://www.xjishu.com/zhuanli/27/202111297086.html
7.基因突变也会发生癌症;世界首个完全由AI设计的CRISPR基因编辑CRISPR基因编辑技术是21世纪最受关注的生命科学突破之一。去年,首款基于CRISPR的基因编辑疗法获批上市,标志着遗传疾病治疗的新纪元。与此同时,人工智能的进步也为设计更强大的基因编辑器带来了希望。 2024年4月22日,AI蛋白质设计公司 Profluent在预印本平台bioRxiv上发表了题为:Design of highly functional genome edithttps://bydrug.pharmcube.com/news/detail/caaf4f23c9805c777a3c7947e7f137f4
8.世界首个完全由AI设计的CRISPR基因编辑器来了澎湃号·湃客CRISPR基因编辑是公认的21世纪以来最受关注、最具突破性的生命科学突破,自2012年正式诞生后,短短8年后就获得了诺贝尔奖的认可,去年年底,首款基于CRISPR的基因编辑疗法获得FDA批准上市,用于治疗镰状细胞病和β-地中海贫血,从而开启了遗传疾病治疗的新篇章。 https://www.thepaper.cn/newsDetail_forward_27159623
9.湖北地黄CRISPR/Cas9基因编辑体系的建立本研究以湖北地黄为材料, 克隆湖北地黄八氢番 茄红素脱氢酶基因RhPDS1序列, 在其编码区设计 sgRNA靶点序列, 构建CRISPR/Cas9基因编辑载体, 以根癌农杆菌介导法遗传转化湖北地黄, 并分析获得 突变体的效率, 进而建立湖北地黄的基因编辑体系, 旨在为其功能基因研究和分子育种奠定技术基础. 1 材料与方法 1.1 实验https://www.chinbullbotany.com/CN/article/downloadArticleFile.do?attachType=PDF&id=93362
10.Nature综述:国内顶尖课题组都在用,科研成果取得大的突破!近年来“基因编辑行业正处于飞速发展的关键时期,涵盖了技术进展、商业化应用、伦理法规、投资合作等多个方面。在技术方面,CRISPR-Cas9技术的出现标志着基因编辑技术的重大突破,这一先进技术已广泛应用于生物医学、农业和疾病治疗等领域。它的精确和高效为整个行业的快速发展提供了强劲动力。商业化应用也在稳步推进。许多公https://www.biodiscover.com/reaseach/742102.html
11.Cell综述CRISPR基因组编辑技术的过去现在和未来在这篇综述中,作者讨论了CRISPR基因编辑技术在研究和治疗方面的现状,强调了限制它们的局限性和近年来开发的技术创新来解决这些问题。此外,还检查和总结了基因编辑在人类健康和治疗方面的当前应用情况。最后概述了未来可能影响基因编辑技术及其应用的潜在发展。https://www.las.ac.cn/front/product/detail?id=4a3e1a6fcdac1df9db4776b907733461
12.干货基因编辑探秘系列之在细胞与基因治疗领域的应用2023年11月16日,Vertex Pharmaceuticals和CRISPR Therapeutics共同宣布基因编辑疗法产品CASGEVY?(Exagaglogene autotemcel)获英国药品监管机构MHRA有条件批准上市,用于治疗治疗镰状细胞病(SCD)和输血依赖性β-地中海贫血(TDT),是全球首款获批上市的CRISPR基因编辑药物,12月8日,美国食品和药物管理局(FDA)也批准了该基因https://www.eastbio.bioon.com.cn/article/dd32290334d0
13.基因组编辑技术应用于作物遗传改良的进展与挑战因此,实际应用ZFNs打靶时,需要在靶点的两侧各设计一个ZFN。待2个ZFN结合到结合位点后,2个FokI相互作用形成二聚体,从而在靶点处切割DNA,产生DSBs。2002年,ZFNs首次成功应用于果蝇内源基因的定向突变。迄今为止,ZFNs技术已成功应用于人类干细胞、大鼠、果蝇、斑马鱼、拟南芥、烟草和玉米等生物体的基因组编辑。http://www.moa.gov.cn/ztzl/zjyqwgz/kpxc/201804/t20180424_6140887.htm
14.CRISPRKOPool现货基因敲除细胞现货基因编辑粒曼团队已完成该工作:人和鼠源基因的sgRNA设计及实验验证。 4. 截止目前,基因敲除到底能不能像“质粒提取”一样简单和稳健,通过一个试剂盒,只要严格按照protocol来做,就可以很高成功率下完成基因编辑实验,哪怕自己是第一次做编辑实验的。 粒曼团队已实现该设想:全面推出LM CRISPR EasyKO试剂盒(RNP法),以及配套http://www.elem-bio.cn/news_details/28.html
15.CRISPRriboEDIT? CRISPR-Cas9是锐博自主开发的采用天然复合物系统的即用型(Ready-to-Use)基因编辑体系,gRNA采用crRNA和tracrRNA,提供全RNA体系(crRNA+tracrRNA+Cas9 mRNA)和RNP体系(crRNA+tracrRNA+Cas9 Protein),充分借助化学合成技术优势和质谱检测以确保质量稳定,通过化学转染、显微注射或电穿孔/电转进行编辑,是大规模文https://www.ribobio.com/product-and-service/crispr-cas9/
16.一种高效无选择标记的黑曲霉基因组编辑方法CRISPR/Cas9技术是一种被广泛采用的黑曲霉基因组编辑技术,但由于需要在基因组中整合选择标记或基因编辑效率还有待提高,影响了其在工业菌株改造中的应用。本研究建立了一种基于CRISPR/Cas9技术的高效无选择标记的基因编辑方法。首先,利用5S rRNA启动子启动sgRNA的表达,构建了一个含有AMA1 (autonomously maintained in https://cjb.ijournals.cn/html/cjbcn/2022/12/gc22124744.htm
17.应用CRISPR/Cas9基因编辑技术构建沉默MARCH2的细胞系摘要: CRISPR/Cas9系统是一种先进的基因编辑技术,人工设计先导RNA (single-guide RNA, sgRNA)介导外源表达的Cas9蛋白特异性的结合、切割基因组靶点,切割后的DNA有非同源末端连接(non-homologous end joining, NHEJ)和同源重组(homologous recombination)两种修复方式,以构建基因特异性敲除或敲入细胞。The membrane https://www.hanspub.org/journal/PaperInformation.aspx?paperID=29521
18.CRISPR十年:基因编辑技术初露锋芒除了常规的CRISPR-Cas9诱导基因敲除外,碱基编辑则能够在位点生成特定而精确的点突变,利用基因工程设计的Cas9与酶融合改变了DNA碱基的化学本质。过去十年中,CRISPR技术已经在科学家手中成为适用性很高的工具,广泛用于研究生物功能、解析基因相互作用,以及对抗人类疾病和生产基因工程作物。本综述追溯CRISPR基因编辑技术从诞生到https://worldscience.cn/c/2023-05-28/642570.shtml
19.CRISPRCas技术:靶向基因组编辑- 肿瘤免疫治疗新靶点的筛选 CRISPR-Cas9 作用机制 CRISPR-Cas9 系统只有三个必需的组件(Cas9 以及 crRNA 和 trRNA)。可以在各种真核细胞中进行靶向基因切割和基因编辑,通CRISPR-Cas9调控机理图:通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 内源性修复双链 DNA 断裂[1]过人工设计的 sgRNA(guide RNA)来识https://www.acrobiosystems.cn/L147-CRISPR-Cas.html