AbstractCRISPR–Cas9genomeeditingtechnologyisapromisingtoolforgeneticallyengineeringimmunecellsandmodulatingimmunesystems.Althoughexvivogenomeeditingofimmunecellshasreachedclinicaltrials,invivoapplicationisstillrestrictedbytheinstabilityandinefficientdeliveryofCRISPR–Cas9componentstoimmunecellsthroughcirculation.
摘要CRISPR-Cas9基因组编辑技术是基因工程免疫细胞和调节免疫系统的有前途的工具。尽管免疫细胞的离体基因组编辑已达到临床试验阶段,但体内应用仍然受到CRISPR-Cas9成分通过循环向免疫细胞传递的不稳定性和低效性的限制。
InthisReview,wesummarizeexvivoandinvivostrategiestodeliverCRISPR–Cas9componentstobothnon-immuneandimmunecells.Wereviewtheprogressmadeinnon-immunecellsbecauseitoffersinsightsthatcanbeappliedtoadvancingresearchinimmunecells.WealsodiscussprinciplesandchallengesofimmunesystemmodulationusingCRISPR–Cas9genomeeditingtechnology..
在这篇综述中,我们总结了将CRISPR-Cas9成分递送至非免疫细胞和免疫细胞的离体和体内策略。我们回顾了非免疫细胞的进展,因为它提供了可用于推进免疫细胞研究的见解。我们还讨论了使用CRISPR-Cas9基因组编辑技术调节免疫系统的原理和挑战。。
Accessthroughyourinstitution
通过您的机构访问
Buyorsubscribe
购买或订阅
Thisisapreviewofsubscriptioncontent,accessviayourinstitution
这是订阅内容的预览,可通过您的机构访问
Accessoptions
访问选项
Changeinstitution
变革机构
AccessNatureand54otherNaturePortfoliojournalsGetNature+,ourbest-valueonline-accesssubscription24,99€ /30dayscancelanytimeLearnmoreSubscribetothisjournalReceive12digitalissuesandonlineaccesstoarticles111,21€ peryearonly9,27€ perissueLearnmoreBuythisarticlePurchaseonSpringerLinkInstantaccesstofullarticlePDFBuynowPricesmaybesubjecttolocaltaxeswhicharecalculatedduringcheckout.
Additionalaccessoptions:
其他访问选项:
Login
Learnaboutinstitutionalsubscriptions
了解机构订阅
ReadourFAQs
阅读我们的常见问题
Contactcustomersupport
联系客户支持
Fig.1:MechanismandcellulardeliveryofCRISPR–Cas9geneeditingsystem.Fig.2:CRISPR–Cas9deliverytoimmunecells.Fig.3:DeliveryapproachesforimmunecellgenomeeditingwithCRISPR–Cas9.Fig.4:TimelineofCRISPR–Cas9-basedgeneeditingofimmunecells.
ReferencesJacobson,D.L.,Gange,S.J.,Rose,N.R.&Graham,N.M.EpidemiologyandestimatedpopulationburdenofselectedautoimmunediseasesintheUnitedStates.Clin.Immunol.Immunopathol.84,223–243(1997).Article
CAS
中科院
GoogleScholar
谷歌学者
Marrack,P.,Kappler,J.&Kotzin,B.L.Autoimmunedisease:whyandwhereitoccurs.Nat.Med.7,899–905(2001).Article
Cox,D.B.,Platt,R.J.&Zhang,F.Therapeuticgenomeediting:prospectsandchallenges.Nat.Med.21,121–131(2015).Article
Urnov,F.D.,Rebar,E.J.,Holmes,M.C.,Zhang,H.S.&Gregory,P.D.Genomeeditingwithengineeredzincfingernucleases.Nat.Rev.Genet.11,636–646(2010).Article
Bogdanove,A.J.&Voytas,D.F.TALeffectors:customizableproteinsforDNAtargeting.Science333,1843–1846(2011).Article
Cong,L.etal.MultiplexgenomeengineeringusingCRISPR/Cassystems.Science339,819–823(2013).Article
Ran,F.A.etal.GenomeengineeringusingtheCRISPR-Cas9system.Nat.Protoc.8,2281–2308(2013).Article
Guo,C.,Ma,X.,Gao,F.&Guo,Y.Off-targeteffectsinCRISPR/Cas9geneediting.Front.Bioeng.Biotechnol.11,1143157(2023).Article
Kouranova,E.etal.CRISPRsforoptimaltargeting:deliveryofCRISPRcomponentsasDNA,RNA,andproteinintoculturedcellsandsingle-cellembryos.Hum.GeneTher.27,464–475(2016).Article
Kumar,R.etal.Polymericdeliveryoftherapeuticnucleicacids.Chem.Rev.121,11527–11652(2021).Article
Sahel,D.K.etal.CRISPR/Cas9genomeeditingfortissue-specificinvivotargeting:nanomaterialsandtranslationalperspective.Adv.Sci.10,e2305072(2023).Article
Pesch,T.etal.Moleculardesign,optimization,andgenomicintegrationofchimericBcellreceptorsinmurineBcells.Front.Immunol.10,2630(2019).Article
Yang,Y.A.-O.,Wang,D.,Lü,P.,Ma,S.&Chen,K.ResearchprogressonnucleicaciddetectionandgenomeeditingofCRISPR/Cas12system.Mol.Biol.Rep.50,3723–3738(2019).Article
Senthilnathan,R.A.-O.X.etal.AnupdateonCRISPR-Cas12asaversatiletoolingenomeediting.Mol.Biol.Rep.50,2865–2881(2019).Article
Liu,H.,Zhu,Y.,Li,M.&Gu,Z.A.-O.Precisegenomeeditingwithbaseeditors.Med.Rev.22,75–84(2019).
Liu,H.,Zhu,Y.,Li,M。&Gu,Z.A.-O。使用基础编辑器进行精确的基因组编辑。医学版22,75-84(2019)。
Doman,J.L.,Sousa,A.A.,Randolph,P.B.,Chen,P.J.&Liu,D.R.Designingandexecutingprimeeditingexperimentsinmammaliancells.Nat.Protoc.17,2431–2468(2022).Article
Zhao,Z.,Shang,P.,Mohanraju,P.&Geijsen,N.Primeediting:advancesandtherapeuticapplications.TrendsBiotechnol.41,1000–1012(2022).Article
Chen,P.J.&Liu,D.R.Primeeditingforpreciseandhighlyversatilegenomemanipulation.Nat.Rev.Genet.24,161–177(2023).Article
Zhou,T.etal.LupusenhancerriskvariantcausesdysregulationofIRF8throughcooperativelncRNAandDNAmethylationmachinery.Nat.Commun.13,1855(2022).Article
Bhowmik,R.&Chaubey,B.CRISPR/Cas9:atooltoeradicateHIV-1.AIDSRes.Ther.19,58(2022).Article
Stefanoudakis,D.etal.ThepotentialrevolutionofcancertreatmentwithCRISPRtechnology.Cancers15,1813(2023).Article
Legut,M.,Dolton,G.,Mian,A.A.,Ottmann,O.G.&Sewell,A.K.CRISPR-mediatedTCRreplacementgeneratessuperioranticancertransgenicTcells.Blood131,311–322(2018).Article
Ray,M.etal.CRISPRedmacrophagesforcell-basedcancerimmunotherapy.Bioconjug.Chem.29,445–450(2018).Article
Xu,C.etal.TargetingofNLRP3inflammasomewithgeneeditingfortheameliorationofinflammatorydiseases.Nat.Commun.9,4092(2018).Article
Limanskiy,V.,Vyas,A.,Chaturvedi,L.S.&Vyas,D.HarnessingthepotentialofgeneeditingtechnologyusingCRISPRininflammatoryboweldisease.WorldJ.Gastroenterol.25,2177–2187(2019).Article
Bevacqua,R.J.etal.CRISPR-basedgenomeeditinginprimaryhumanpancreaticisletcells.Nat.Commun.12,2397(2021).Article
Baker,C.&Hayden,M.S.Geneeditingindermatology:harnessingCRISPRforthetreatmentofcutaneousdisease.F1000Res.9,281(2020).Article
Lin,W.etal.Tumor-intrinsicYTHDF1drivesimmuneevasionandresistancetoimmunecheckpointinhibitorsviapromotingMHC-Idegradation.Nat.Commun.14,265(2023).Article
Levy,E.C.,J.,Reger,R.,Allan,D.&Childs,R.RNA-seqanalysisrevealsCCR5asakeytargetforCRISPRgeneeditingtoregulateinvivoNKcelltrafficking.Cancers13,872(2021).Article
Guo,X.etal.CBLBablationwithCRISPR/Cas9enhancescytotoxicityofhumanplacentalstemcell-derivedNKcellsforcancerimmunotherapy.J.Immunother.Cancer9,e001975(2021).Article
Greiner,V.etal.CRISPR-mediatededitingoftheBcellreceptorinprimaryhumanBcells.iScience12,369–378(2019).Article
Zhang,H.etal.CRISPR/Cas9-mediatedgeneeditinginhumaniPSC-derivedmacrophagerevealslysosomalacidlipasefunctioninhumanmacrophages—briefreport.Arterioscler.Thromb.Vasc.Biol.37,2156–2160(2017).Article
Parnas,O.etal.Agenome-wideCRISPRscreeninprimaryimmunecellstodissectregulatorynetworks.Cell162,675–686(2015).Article
Dimitri,A.,Herbst,F.&Fraietta,J.A.Engineeringthenext-generationofCART-cellswithCRISPR-Cas9geneediting.Mol.Cancer21,78(2022).Article
Nussing,S.etal.EfficientCRISPR/Cas9geneeditinginunculturednaivemouseTcellsforinvivostudies.J.Immunol.204,2308–2315(2020).Article
Zhang,J.etal.Non-viral,specificallytargetedCAR-TcellsachievehighsafetyandefficacyinB-NHL.Nature609,369–374(2022).Article
Ghaffari,S.,Khalili,N.&Rezaei,N.CRISPR/Cas9revitalizesadoptiveT-celltherapyforcancerimmunotherapy.J.Exp.Clin.CancerRes.40,269(2021).Article
Hu,Y.etal.SafetyandefficacyofCRISPR-basednon-viralPD1locusspecificallyintegratedanti-CD19CAR-Tcellsinpatientswithrelapsedorrefractorynon-Hodgkin’slymphoma:afirst-in-humanphaseIstudy.EClinicalMedicine60,102010(2023).Article
Eyquem,J.etal.TargetingaCARtotheTRAClocuswithCRISPR/Cas9enhancestumourrejection.Nature543,113–117(2017).Article
Lefesvre,P.,Attema,J.&vanBekkum,D.Acomparisonofefficacyandtoxicitybetweenelectroporationandadenoviralgenetransfer.BMCMol.Biol.3,12(2002).Article
Netea,M.G.etal.Definingtrainedimmunityanditsroleinhealthanddisease.Nat.Rev.Immunol.20,375–388(2020).Article
Charlesworth,C.T.etal.IdentificationofpreexistingadaptiveimmunitytoCas9proteinsinhumans.Nat.Med.25,249–254(2019).Article
Blanco,E.,Shen,H.&Ferrari,M.Principlesofnanoparticledesignforovercomingbiologicalbarrierstodrugdelivery.Nat.Biotechnol.33,941–951(2015).Article
Schudel,A.,Francis,D.M.&Thomas,S.N.Materialdesignforlymphnodedrugdelivery.Nat.Rev.Mater.4,415–428(2019).Article
Bulcaen,M.&Carlon,M.S.Geneeditingflowstothelungs.Science384,1175–1176(2019).Article
Lieleg,O.,Baumgartel,R.M.&Bausch,A.R.Selectivefilteringofparticlesbytheextracellularmatrix:anelectrostaticbandpass.Biophys.J.97,1569–1577(2009).Article
Lechardeur,D.&Lukacs,G.L.Intracellularbarrierstonon-viralgenetransfer.Curr.GeneTher.2,183–194(2002).Article
Shui,S.,Wang,S.&Liu,J.SystematicinvestigationoftheeffectsofmultipleSV40nuclearlocalizationsignalfusiononthegenomeeditingactivityofpurifiedSpCas9.Bioengineering9,83(2022).Article
AlbertsB.etal.inMolecularBiologyoftheCellCh.2,Ch.12(GarlandScience,2002).Lin,Y.,Wagner,E.&Lachelt,U.Non-viraldeliveryoftheCRISPR/Cassystem:DNAversusRNAversusRNP.Biomater.Sci.10,1166–1192(2022).Article
Liu,C.,Zhang,L.,Liu,H.&Cheng,K.DeliverystrategiesoftheCRISPR-Cas9gene-editingsystemfortherapeuticapplications.J.Control.Release266,17–26(2017).Article
Bulcha,J.T.,Wang,Y.,Ma,H.,Tai,P.W.L.&Gao,G.Viralvectorplatformswithinthegenetherapylandscape.SignalTransduct.Target.Ther.6,53(2021).Article
Fajrial,A.K.,He,Q.Q.,Wirusanti,N.I.,Slansky,J.E.&Ding,X.AreviewofemergingphysicaltransfectionmethodsforCRISPR/Cas9-mediatedgeneediting.Theranostics10,5532–5549(2020).Article
Frangoul,H.etal.CRISPR-Cas9geneeditingforsicklecelldiseaseandβ-thalassemia.N.Engl.J.Med.384,252–260(2021).Article
Philippidis,A.CASGEVYmakeshistoryasFDAapprovesfirstCRISPR/Cas9genomeeditedtherapy.Hum.GeneTher.35,1–4(2024).Article
Zhang,P.,Zhang,G.&Wan,X.Challengesandnewtechnologiesinadoptivecelltherapy.J.Hematol.Oncol.16,97(2023).Article
Hamilton,A.G.,Swingle,K.L.&Mitchell,M.J.Biotechnology:overcomingbiologicalbarrierstonucleicaciddeliveryusinglipidnanoparticles.PLoSBiol.21,e3002105(2023).Article
AsmamawMengstie,M.ViralvectorsfortheinvivodeliveryofCRISPRcomponents:advancesandchallenges.Front.Bioeng.Biotechnol.10,895713(2022).Article
Yu,J.etal.Designofaself-drivenprobiotic-CRISPR/Cas9nanosystemforsono-immunometaboliccancertherapy.Nat.Commun.13,7903(2022).Article
Shirley,J.L.,deJong,Y.P.,Terhorst,C.&Herzog,R.W.Immuneresponsestoviralgenetherapyvectors.Mol.Ther.28,709–722(2020).Article
Ramamoorth,M.&Narvekar,A.Nonviralvectorsingenetherapy—anoverview.J.Clin.Diagn.Res.9,GE01–GE06(2015).
Ramamoorth,M。&Narvekar,A。基因治疗中的非病毒载体-概述。J、临床。诊断。第9号决议,GE01–GE06(2015)。
Wells,D.J.Genetherapyprogressandprospects:electroporationandotherphysicalmethods.GeneTher.11,1363–1369(2004).Article
Wang,M.etal.Sonoporation-inducedcellmembranepermeabilizationandcytoskeletondisassemblyatvariedacousticandmicrobubble-cellparameters.Sci.Rep.8,3885(2018).Article
Landwehr,G.M.etal.Biophysicalanalysisoffluidshearstressinducedcellulardeformationinamicrofluidicdevice.Biomicrofluidics12,054109(2018).Article
Gu,B.,Posfai,E.&Rossant,J.Efficientgenerationoftargetedlargeinsertionsbymicroinjectionintotwo-cell-stagemouseembryos.Nat.Biotechnol.36,632–637(2018).Article
Ran,F.A.etal.InvivogenomeeditingusingStaphylococcusaureusCas9.Nature520,186–191(2015).Article
Sawyer,G.J.etal.Cardiovascularfunctionfollowingacutevolumeoverloadforhydrodynamicgenedeliverytotheliver.GeneTher.14,1208–1217(2007).Article
Tanihara,F.etal.GenerationofPDX-1mutantporcineblastocystsbyintroducingCRISPR/Cas9-systemintoporcinezygotesviaelectroporation.Anim.Sci.J.90,55–61(2019).Article
Cai,J.,Huang,S.,Yi,Y.&Bao,S.Ultrasoundmicrobubble-mediatedCRISPR/Cas9knockoutofC-erbB-2inHEC-1Acells.J.Int.Med.Res.47,2199–2206(2019).Article
Anderson,C.D.etal.Non-viralinvivocytidinebaseeditinginhepatocytesusingfocusedultrasoundtargetedmicrobubbles.Mol.Ther.NucleicAcids33,733–737(2023).Article
Wang,Y.etal.Efficientgenerationofgene-modifiedpigsviainjectionofzygotewithCas9/sgRNA.Sci.Rep.5,8256(2015).Article
Raveux,A.,Vandormael-Pournin,S.&Cohen-Tannoudji,M.Optimizationoftheproductionofknock-inallelesbyCRISPR/Cas9microinjectionintothemousezygote.Sci.Rep.7,42661(2017).Article
Hashimoto,M.&Takemoto,T.ElectroporationenablestheefficientmRNAdeliveryintothemousezygotesandfacilitatesCRISPR/Cas9-basedgenomeediting.Sci.Rep.5,11315(2015).Article
Lino,C.A.,Harper,J.C.,Carney,J.P.&Timlin,J.A.DeliveringCRISPR:areviewofthechallengesandapproaches.DrugDeliv.25,1234–1257(2018).Article
Hur,J.&Chung,A.J.Microfluidicandnanofluidicintracellulardelivery.Adv.Sci.8,e2004595(2021).Article
Yin,H.etal.GenomeeditingwithCas9inadultmicecorrectsadiseasemutationandphenotype.Nat.Biotechnol.32,551–553(2014).Article
Guan,Y.etal.CRISPR/Cas9-mediatedsomaticcorrectionofanovelcoagulatorfactorIXgenemutationameliorateshemophiliainmouse.EMBOMol.Med.8,477–488(2016).Article
Schumann,K.etal.Generationofknock-inprimaryhumanTcellsusingCas9ribonucleoproteins.Proc.NatlAcad.Sci.USA112,10437–10442(2015).Article
Abe,T.,Inoue,K.I.,Furuta,Y.&Kiyonari,H.PronuclearmicroinjectionduringS-phaseincreasestheefficiencyofCRISPR-Cas9-assistedknockinoflargeDNAdonorsinmousezygotes.CellRep.31,107653(2020).Article
Seki,A.&Rutz,S.OptimizedRNPtransfectionforhighlyefficientCRISPR/Cas9-mediatedgeneknockoutinprimaryTcells.J.Exp.Med.215,985–997(2018).Article
Pavlovic,K.etal.Usinggeneeditingapproachestofine-tunetheimmunesystem.Front.Immunol.11,570672(2020).Article
Wu,C.M.etal.GeneticengineeringinprimaryhumanBcellswithCRISPR-Cas9ribonucleoproteins.J.Immunol.Methods457,33–40(2018).Article
Moffett,H.F.etal.Bcellsengineeredtoexpresspathogen-specificantibodiesprotectagainstinfection.Sci.Immunol.4,eaax0644(2019).Article
Huang,R.S.,Lai,M.C.&Lin,S.ExvivoexpansionandCRISPR-Cas9genomeeditingofprimaryhumannaturalkillercells.Curr.Protoc.1,e246(2021).Article
CellStemCell27,224–237.e6(2020).Article.
DiTommaso,T.etal.Cellengineeringwithmicrofluidicsqueezingpreservesfunctionalityofprimaryimmunecellsinvivo.Proc.NatlAcad.Sci.USA115,E10907–E10914(2018).Article
Murphy,K.R.etal.High-frequencyirreversibleelectroporationbraintumorablation:exploringthedynamicsofcelldeathandrecovery.Bioelectrochemistry144,108001(2022).Article
Rupp,L.J.etal.CRISPR/Cas9-mediatedPD-1disruptionenhancesanti-tumorefficacyofhumanchimericantigenreceptorTcells.Sci.Rep.7,737(2017).Article
Kaminski,R.etal.EliminationofHIV-1genomesfromhumanT-lymphoidcellsbyCRISPR/Cas9geneediting.Sci.Rep.6,22555(2016).Article
Kotterman,M.A.,Chalberg,T.W.&Schaffer,D.V.Viralvectorsforgenetherapy:translationalandclinicaloutlook.Annu.Rev.Biomed.Eng.17,63–89(2015).Article
Zincarelli,C.,Soltys,S.,Rengo,G.&Rabinowitz,J.E.AnalysisofAAVserotypes1-9mediatedgeneexpressionandtropisminmiceaftersystemicinjection.Mol.Ther.16,1073–1080(2008).Article
Naso,M.F.,Tomkowicz,B.,Perry,W.L.III&Strohl,W.R.Adeno-associatedvirus(AAV)asavectorforgenetherapy.BioDrugs31,317–334(2017).Article
Nyberg,W.A.etal.AnevolvedAAVvariantenablesefficientgeneticengineeringofmurineTcells.Cell186,446–460.e19(2023).Article
Li,A.etal.Aself-deletingAAV-CRISPRsystemforinvivogenomeediting.Mol.Ther.MethodsClin.Dev.12,111–122(2019).Article
Schiwon,M.etal.One-vectorsystemformultiplexedCRISPR/Cas9againsthepatitisBviruscccDNAutilizinghigh-capacityadenoviralvectors.Mol.Ther.NucleicAcids12,242–253(2018).Article
Wang,D.etal.Adenovirus-mediatedsomaticgenomeeditingofPtenbyCRISPR/Cas9inmouseliverinspiteofCas9-specificimmuneresponses.Hum.GeneTher.26,432–442(2015).Article
Wu,Z.,Yang,H.&Colosi,P.EffectofgenomesizeonAAVvectorpackaging.Mol.Ther.18,80–86(2010).Article
Cheong,T.C.,Compagno,M.&Chiarle,R.EditingofmouseandhumanimmunoglobulingenesbyCRISPR-Cas9system.Nat.Commun.7,10934(2016).Article
Voss,J.E.etal.ReprogrammingtheantigenspecificityofBcellsusinggenome-editingtechnologies.eLife8,e42995(2019).Article
Hung,K.L.etal.Engineeringprotein-secretingplasmacellsbyhomology-directedrepairinprimaryhumanBcells.Mol.Ther.26,456–467(2018).Article
Johnson,M.J.,Laoharawee,K.,Lahr,W.S.,Webber,B.R.&Moriarity,B.S.EngineeringofprimaryhumanBcellswithCRISPR/Cas9targetednuclease.Sci.Rep.9,12144(2018).Article
Li,C.etal.InhibitionofHIV-1infectionofprimaryCD4+T-cellsbygeneeditingofCCR5usingadenovirus-deliveredCRISPR/Cas9.J.Gen.Virol.96,2381–2393(2015).Article
Sutlu,T.etal.Inhibitionofintracellularantiviraldefensemechanismsaugmentslentiviraltransductionofhumannaturalkillercells:implicationsforgenetherapy.Hum.GeneTher.23,1090–1100(2012).Article
Jo,D.H.etal.SimultaneousengineeringofnaturalkillercellsforCARtransgenesisandCRISPR-Cas9knockoutusingretroviralparticles.Mol.Ther.MethodsClin.Dev.29,173–184(2023).Article
Pomeroy,E.J.etal.Ageneticallyengineeredprimaryhumannaturalkillercellplatformforcancerimmunotherapy.Mol.Ther.28,52–63(2020).Article
Jost,M.etal.CRISPR-basedfunctionalgenomicsinhumandendriticcells.eLife10,e65856(2021).Article
Dufait,I.etal.Retroviralandlentiviralvectorsfortheinductionofimmunologicaltolerance.Scientifica2012,694137(2012).Article
Aguado,B.A.,Grim,J.C.,Rosales,A.M.,Watson-Capps,J.J.&Anseth,K.S.Engineeringprecisionbiomaterialsforpersonalizedmedicine.Sci.Transl.Med.10,eaam8645(2018).Article
Behzadi,S.etal.Cellularuptakeofnanoparticles:journeyinsidethecell.Chem.Soc.Rev.46,4218–4244(2017).Article
Madigan,V.,Zhang,F.&Dahlman,J.E.DrugdeliverysystemsforCRISPR-basedgenomeeditors.Nat.Rev.DrugDiscov.22,875–894(2023).Article
Barua,S.&Mitragotri,S.Challengesassociatedwithpenetrationofnanoparticlesacrosscellandtissuebarriers:areviewofcurrentstatusandfutureprospects.NanoToday9,223–243(2014).Article
Luo,Y.L.etal.Macrophage-specificinvivogeneeditingusingcationiclipid-assistedpolymericnanoparticles.ACSNano12,994–1005(2018).Article
Akinc,A.etal.TheOnpattrostoryandtheclinicaltranslationofnanomedicinescontainingnucleicacid-baseddrugs.Nat.Nanotechnol.14,1084–1087(2019).Article
Polack,F.P.etal.SafetyandefficacyoftheBNT162b2mRNACovid-19vaccine.N.Engl.J.Med.383,2603–2615(2020).Article
Schoenmaker,L.etal.mRNA-lipidnanoparticleCOVID-19vaccines:structureandstability.Int.J.Pharm.601,120586(2021).Article
Hassett,K.J.etal.OptimizationoflipidnanoparticlesforintramuscularadministrationofmRNAvaccines.Mol.Ther.NucleicAcids15,1–11(2019).Article
Suzuki,Y.&Ishihara,H.DifferenceinthelipidnanoparticletechnologyemployedinthreeapprovedsiRNA(patisiran)andmRNA(COVID-19vaccine)drugs.DrugMetab.Pharmacokinet.41,100424(2021).Article
Nat.Biotechnol.33,73–80(2015).Article.
Wang,M.etal.Efficientdeliveryofgenome-editingproteinsusingbioreduciblelipidnanoparticles.Proc.NatlAcad.Sci.USA113,2868–2873(2016).Article
Wei,T.,Cheng,Q.,Min,Y.-L.,Olson,E.N.&Siegwart,D.J.SystemicnanoparticledeliveryofCRISPR-Cas9ribonucleoproteinsforeffectivetissuespecificgenomeediting.Nat.Commun.11,3232(2020).Article
Miller,J.B.etal.Non‐viralCRISPR/Casgeneeditinginvitroandinvivoenabledbysyntheticnanoparticleco‐deliveryofCas9mRNAandsgRNA.Angew.Chem.Int.Ed.56,1059–1063(2017).Article
Liu,J.etal.FastandefficientCRISPR/Cas9genomeeditinginvivoenabledbybioreduciblelipidandmessengerRNAnanoparticles.Adv.Mater.31,1902575(2019).Article
Chen,K.etal.Engineeringself-deliverableribonucleoproteinsforgenomeeditinginthebrain.Nat.Commun.15,1727(2024).Article
Liang,X.etal.RapidandhighlyefficientmammaliancellengineeringviaCas9proteintransfection.J.Biotechnol.208,44–53(2015).Article
Aksoy,Y.A.etal.SpatialandtemporalcontrolofCRISPR-Cas9-mediatedgeneeditingdeliveredviaalight-triggeredliposomesystem.ACSAppl.Mater.Interfaces12,52433–52444(2020).Article
Cho,E.Y.etal.Lecithinnano-liposomalparticleasaCRISPR/Cas9complexdeliverysystemfortreatingtype2diabetes.J.Nanobiotechnol.17,19(2019).Article
Hou,X.,Zaks,T.,Langer,R.&Dong,Y.LipidnanoparticlesformRNAdelivery.Nat.Rev.Mater.6,1078–1094(2021).Article
Liu,S.etal.Membrane-destabilizingionizablephospholipidsfororgan-selectivemRNAdeliveryandCRISPR-Casgeneediting.Nat.Mater.20,701–710(2021).Article
Lipidnanoparticle-enabledgeneeditinginthelungviainhalation.Nat.Biotechnol.41,1394–1395(2023).Qiu,M.etal.Lipidnanoparticle-mediatedcodeliveryofCas9mRNAandsingle-guideRNAachievesliver-specificinvivogenomeeditingofAngptl3.Proc.NatlAcad.Sci.USA118,e2020401118(2021).Article.
Rosenblum,D.etal.CRISPR-Cas9genomeeditingusingtargetedlipidnanoparticlesforcancertherapy.Sci.Adv.6,eabc9450(2020).Article
Sago,C.D.etal.High-throughputinvivoscreenoffunctionalmRNAdeliveryidentifiesnanoparticlesforendothelialcellgeneediting.Proc.NatlAcad.Sci.USA115,E9944–E9952(2018).Article
Finn,J.D.etal.AsingleadministrationofCRISPR/Cas9lipidnanoparticlesachievesrobustandpersistentinvivogenomeediting.CellRep.22,2227–2235(2018).Article
Gautam,M.etal.LipidnanoparticleswithPEG-variantsurfacemodificationsmediategenomeeditinginthemouseretina.Nat.Commun.14,6468(2023).Article
Gillmore,J.D.etal.CRISPR-Cas9invivogeneeditingfortransthyretinamyloidosis.N.Engl.J.Med.385,493–502(2021).Article
Longhurst,H.J.etal.CRISPR-Cas9invivogeneeditingofKLKB1forhereditaryangioedema.N.Engl.J.Med.390,432–441(2024).Article
Gao,Q.etal.TherapeuticpotentialofCRISPR/Cas9geneeditinginengineeredT-celltherapy.CancerMed.8,4254–4264(2019).Article
Cheng,Q.etal.Selectiveorgantargeting(SORT)nanoparticlesfortissue-specificmRNAdeliveryandCRISPR–Casgeneediting.Nat.Nanotechnol.15,313–320(2020).Article
Kozma,G.T.,Shimizu,T.,Ishida,T.&Szebeni,J.Anti-PEGantibodies:properties,formation,testingandroleinadverseimmunereactionstoPEGylatednano-biopharmaceuticals.Adv.DrugDeliv.Rev.154–155,163–175(2020).Article
Yasuda,S.etal.Comparisonofthetypeofliposomeinvolvingcytokineproductioninducedbynon-CpGlipoplexinmacrophages.Mol.Pharm.7,533–542(2020).Article
Inglut,C.T.etal.Immunologicalandtoxicologicalconsiderationsforthedesignofliposomes.Nanomaterials10,190(2020).Article
Chen,S.P.&Blakney,A.K.Immuneresponsetothecomponentsoflipidnanoparticlesforribonucleicacidtherapeutics.Curr.Opin.Biotechnol.85,103049(2024).Article
Machtakova,M.,Therien-Aubin,H.&Landfester,K.Polymernano-systemsfortheencapsulationanddeliveryofactivebiomacromoleculartherapeuticagents.Chem.Soc.Rev.51,128–152(2022).Article
Emami,M.R.etal.PolyrotaxanenanocarrierscandeliverCRISPR/Cas9plasmidtodystrophicmusclecellstosuccessfullyedittheDMDgene.Adv.Ther.2,1900061(2019).Article
Gao,X.etal.Hyperbranchedpoly(β-aminoester)basedpolyplexnanopaticlesfordeliveryofCRISPR/Cas9systemandtreatmentofHPVinfectionassociatedcervicalcancer.J.Control.Release321,654–668(2020).Article
Li,M.etal.Optimizednanoparticle-mediateddeliveryofCRISPR-Cas9systemforBcellintervention.NanoRes.11,6270–6282(2018).Article
ACSNano15,18541–18556(2021).Article.
Xie,R.etal.pH-responsivepolymernanoparticlesforefficientdeliveryofCas9ribonucleoproteinwithorwithoutdonorDNA.Adv.Mater.34,e2110618(2022).Article
Zhao,L.etal.HSP70-promoter-drivenCRISPR/Cas9systemactivatedbyreactiveoxygenspeciesformultifacetedanticancerimmuneresponseandpotentiatedimmunotherapy.ACSNano16,13821–13833(2022).Article
Wang,R.etal.Synthesisandgenedeliveryofpoly(amidoamine)swithdifferentbranchedarchitecture.Biomacromolecules11,489–495(2010).Article
Kang,Y.K.etal.Nonviralgenomeeditingbasedonapolymer-derivatizedCRISPRnanocomplexfortargetingbacterialpathogensandantibioticresistance.Bioconjug.Chem.28,957–967(2017).Article
Timin,A.S.etal.Efficientgeneeditingvianon-viraldeliveryofCRISPR-Cas9systemusingpolymericandhybridmicrocarriers.Nanomedicine14,97–108(2018).Article
Sun,W.etal.Self-assembledDNAnanoclewsfortheefficientdeliveryofCRISPR-Cas9forgenomeediting.Angew.Chem.Int.Ed.54,12029–12033(2015).Article
Yue,H.,Zhou,X.,Cheng,M.&Xing,D.Grapheneoxide-mediatedCas9/sgRNAdeliveryforefficientgenomeediting.Nanoscale10,1063–1071(2018).Article
Hryhorowicz,M.etal.ImproveddeliveryofCRISPR/Cas9systemusingmagneticnanoparticlesintoporcinefibroblast.Mol.Biotechnol.61,173–180(2019).Article
Rogers,G.L.&Cannon,P.M.GenomeeditedBcells:anewfrontierinimmunecelltherapies.Mol.Ther.29,3192–3204(2021).Article
Perrin,S.&Magill,M.TheinhibitionofCD40/CD154costimulatorysignalinginthepreventionofrenaltransplantrejectioninnonhumanprimates:asystematicreviewandmetaanalysis.Front.Immunol.13,861471(2022).Article
Zhang,Y.etal.InsiturepurposingofdendriticcellswithCRISPR/Cas9-basednanomedicinetoinducetransplanttolerance.Biomaterials217,119302(2019).Article
Nguyen,D.N.etal.Polymer-stabilizedCas9nanoparticlesandmodifiedrepairtemplatesincreasegenomeeditingefficiency.Nat.Biotechnol.38,44–49(2020).Article
Murphy,C.J.etal.Goldnanoparticlesinbiology:beyondtoxicitytocellularimaging.Acc.Chem.Res.41,1721–1730(2008).Article
Liu,J.etal.Dual-responsivecore-shelltectodendrimersenableefficientgeneeditingofcancercellstoboostimmunecheckpointblockadetherapy.ACSAppl.Mater.Interfaces15,12809–12821(2023).Article
Huang,L.etal.Acancercellmembrane-derivedbiomimeticnanocarrierforsynergisticphotothermal/genetherapybyefficientdeliveryofCRISPR/Cas9andgoldnanorods.Adv.Healthc.Mater.11,e2201038(2022).Article
Lee,Y.W.etal.InvivoeditingofmacrophagesthroughsystemicdeliveryofCRISPR-Cas9-ribonucleoprotein-nanoparticlenanoassemblies.Adv.Ther.2,1900041(2019).Article
Rodriguez-Izquierdo,I.etal.Goldnanoparticlescrossingblood-brainbarrierpreventHSV-1infectionandreduceherpesassociatedamyloid-βsecretion.J.Clin.Med.9,155(2020).Article
Johnsen,K.B.etal.Modulatingtheantibodydensitychangestheuptakeandtransportattheblood-brainbarrierofbothtransferrinreceptor-targetedgoldnanoparticlesandliposomalcargo.J.Control.Release295,237–249(2019).Article
Jain,P.K.,Huang,X.,El-Sayed,I.H.&El-Sayed,M.A.Noblemetalsonthenanoscale:opticalandphotothermalpropertiesandsomeapplicationsinimaging,sensing,biology,andmedicine.Acc.Chem.Res.41,1578–1586(2008).Article
Wang,P.etal.Thermo-triggeredreleaseofCRISPR-Cas9systembylipid-encapsulatedgoldnanoparticlesfortumortherapy.Angew.Chem.Int.Ed.57,1491–1496(2018).Article
Lee,K.etal.NanoparticledeliveryofCas9ribonucleoproteinanddonorDNAinvivoinduceshomology-directedDNArepair.Nat.Biomed.Eng.1,889–901(2017).Article
Mout,R.etal.DirectcytosolicdeliveryofCRISPR/Cas9-ribonucleoproteinforefficientgeneediting.ACSNano11,2452–2458(2017).Article
Lee,Y.W.etal.InvivoeditingofmacrophagesthroughsystemicdeliveryofCRISPR‐Cas9‐ribonucleoprotein‐nanoparticlenanoassemblies.Adv.Ther.2,1900041(2019).Article
Willingham,S.B.etal.TheCD47-signalregulatoryproteinalpha(SIRPa)interactionisatherapeutictargetforhumansolidtumors.Proc.NatlAcad.Sci.USA109,6662–6667(2012).Article
Alsaiari,S.K.etal.EndosomalescapeanddeliveryofCRISPR/Cas9genomeeditingmachineryenabledbynanoscalezeoliticimidazolateframework.J.Am.Chem.Soc.140,143–146(2018).Article
Alyami,M.Z.etal.Cell-type-specificCRISPR/Cas9deliverybybiomimeticmetalorganicframeworks.J.Am.Chem.Soc.142,1715–1720(2020).Article
Pan,Y.etal.Near-infraredupconversion–activatedCRISPR-Cas9system:aremote-controlledgeneeditingplatform.Sci.Adv.5,eaav7199(2019).Article
Ramakrishna,S.etal.Genedisruptionbycell-penetratingpeptide-mediateddeliveryofCas9proteinandguideRNA.GenomeRes.24,1020–1027(2014).Article
Rouet,R.etal.Receptor-mediateddeliveryofCRISPR-Cas9endonucleaseforcell-type-specificgeneediting.J.Am.Chem.Soc.140,6596–6603(2018).Article
Zhang,Z.etal.Efficientengineeringofhumanandmouseprimarycellsusingpeptide-assistedgenomeediting.Nat.Biotechnol.42,305–315(2023).Article
Foss,D.V.etal.Peptide-mediateddeliveryofCRISPRenzymesfortheefficienteditingofprimaryhumanlymphocytes.Nat.Biomed.Eng.7,647–660(2023).Article
Ikwuagwu,B.&Tullman-Ercek,D.Virus-likeparticlesfordrugdelivery:areviewofmethodsandapplications.Curr.Opin.Biotechnol.78,102785(2022).Article
Hamilton,J.R.etal.TargeteddeliveryofCRISPR-Cas9andtransgenesenablescompleximmunecellengineering.CellRep.35,109207(2021).Article
Kingwell,K.FirstCRISPRtherapyseekslandmarkapproval.Nat.Rev.DrugDiscov.22,339–341(2023).Article
Rothgangl,T.etal.InvivoadeninebaseeditingofPCSK9inmacaquesreducesLDLcholesterollevels.Nat.Biotechnol.39,949–957(2021).Article
Musunuru,K.etal.InvivoCRISPRbaseeditingofPCSK9durablylowerscholesterolinprimates.Nature593,429–434(2021).Article
DownloadreferencesAcknowledgementsS.K.A.thanksKingAbdulazizCityofScienceandTechnologyforIbnKhaldun(IBK)fellowshipsupport.M.K.thankstheBodossakiFoundationforfellowshipsupport.G.L.thankstheUSNationalScienceFoundationgraduateresearchfellowship(DEG2146752).
下载ReferencesAcknowledgements。K、A.感谢阿卜杜勒·阿齐兹国王科技城对伊本·哈尔登(IBK)奖学金的支持。M、K.感谢博多萨基基金会的奖学金支持。G、L.感谢美国国家科学基金会研究生研究奖学金(DEG2146752)。
TheauthorsthankR.Wilson,UCBerkeley,forthefeedbackandcomments.AuthorinformationAuthornotesShahadK.AlsaiariPresentaddress:DepartmentofBioengineeringandNanomedicine,KingFaisalSpecialistHospitalandResearchCentre,Riyadh,SaudiArabiaBujieDuPresentaddress:CenterforMedicalResearchonInnovationandTranslation,InstituteofClinicalMedicine,Guangzhou,People’sRepublicofChinaBujieDuPresentaddress:SchoolofMedicine,SouthChinaUniversityofTechnology,Guangzhou,People’sRepublicofChinaGaryLiPresentaddress:DepartmentofChemistry,UniversityofCalifornia,Berkeley,CA,USATheseauthorscontributedequally:ShahadK.
Alsaiari,BehnazEshaghi,BujieDu.AuthorsandAffiliationsDavidH.KochInstituteforIntegrativeCancerResearch,MassachusettsInstituteofTechnology,Cambridge,MA,USAShahadK.Alsaiari,BehnazEshaghi,BujieDu,MariaKanelli,GaryLi,XunhuiWu,MehrChaddah,AliciaLau,XinYang,RobertLanger&AnaJaklenecDepartmentofChemicalEngineering,MassachusettsInstituteofTechnology,Cambridge,MA,USALinzixuanZhang&RobertLangerAuthorsShahadK.
Alsairi,BehnazEshaghi,BujieDu。作者和附属机构马萨诸塞州剑桥市麻省理工学院VIDH.Koch综合癌症研究所,USASAHADK.ALSAIRI,BehnazEshaghi,BujieDu,MariaKanelli,GaryLi,XunhuiWu,MehrChaddah,AliciaLau,XinYang,RobertLanger&AnaJaklenec马萨诸塞州剑桥市麻省理工学院化学工程系,USALinzixuanZhang&RobertLangerauthorshaadK。
AlsaiariViewauthorpublicationsYoucanalsosearchforthisauthorin.
。
PubMedGoogleScholarBehnazEshaghiViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarBehnazEshaghiView作者出版物您也可以在
PubMedGoogleScholarBujieDuViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarBujieDuView作者出版物您也可以在
PubMedGoogleScholarMariaKanelliViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarMariaKanelliView作者出版物您也可以在
PubMedGoogleScholarGaryLiViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarGaryLiView作者出版物您也可以在
PubMedGoogleScholarXunhuiWuViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarXunhuiWuView作者出版物您也可以在
PubMedGoogleScholarLinzixuanZhangViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarLinzixuanZhangView作者出版物您也可以在
PubMedGoogleScholarMehrChaddahViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarAliciaLauViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarAliciaLauView作者出版物您也可以在
PubMedGoogleScholarXinYangViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarXinYangView作者出版物您也可以在
PubMedGoogleScholarRobertLangerViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarRobertLangerView作者出版物您也可以在
PubMedGoogleScholarAnaJaklenecViewauthorpublicationsYoucanalsosearchforthisauthorin
PubMedGoogleScholarAnaJaklenecView作者出版物您也可以在
PubMedGoogleScholarContributionsS.K.A.,B.D.andB.E.contributedequallytothemanuscriptandconductedtheinitialliteratureresearchand,inconsultationwithA.J.,outlinedthegeneralmanuscriptformat.B.D.,S.K.A.andB.E.wrotethemanuscriptdraft,withcontributionsfromM.K.andG.L.
PubMed谷歌学术贡献。K、A.,B.D.和B.E.对稿件做出了同样的贡献,并进行了初步的文献研究,并与A.J.协商,概述了稿件的一般格式。B、D.,S.K.A.和B.E.在M.K.和G.L.的贡献下撰写了手稿草稿。
inthechemicalvectorsection,andX.W.,L.Z.andM.C.intheliteratureresearchforexvivodelivery.X.Y.contributedtoFig.4.B.E.,S.K.A.,R.L.andA.J.contributedtothemanuscriptrevision.Allauthorsreviewedandapprovedthefinalmanuscript.CorrespondingauthorsCorrespondenceto.
在化学载体部分,以及X.W.,L.Z.和M.C.在离体递送的文献研究中。十。Y、。B、E.,S.K.A.,R.L.和A.J.为稿件修订做出了贡献。所有作者都审查并批准了最终稿件。通讯作者通讯。
RobertLangerorAnaJaklenec.Ethicsdeclarations
罗伯特·兰格或安娜·雅克伦茨。道德宣言
Competinginterests
相互竞争的利益
A.J.receiveslicensingfeesfrompatentsinwhichshewasaninventor,andsheinvestedin,consultsfor(orwasonScientificAdvisoryBoardsorBoardsofDirectors),lecturedat(andreceivedafee),orconductssponsoredresearchatMIT,forwhichshewasnotpaid,forthefollowingentities:TheEstéeLauderCompanies,ModernaTherapeutics,OmniPulseBiosciences,ParticlesforHumanity,SiO2MaterialsScience,andVitaKey.
A、。
ForalistofentitieswithwhichR.L.isorhasbeenrecentlyinvolvedwithorhadbeencompensatedoruncompensatedby,seeSupplementaryinformation.Allotherauthorsdeclarenocompetinginterests..
Peerreview
同行评审
Peerreviewinformation
同行评审信息
NatureReviewsMaterialsthankstheanonymousreviewersfortheircontributiontothepeerreviewofthiswork.
AdditionalinformationPublisher’snoteSpringerNatureremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.SupplementaryinformationSupplementaryInformationRightsandpermissionsSpringerNatureoritslicensor(e.g.asocietyorotherpartner)holdsexclusiverightstothisarticleunderapublishingagreementwiththeauthor(s)orotherrightsholder(s);authorself-archivingoftheacceptedmanuscriptversionofthisarticleissolelygovernedbythetermsofsuchpublishingagreementandapplicablelaw.ReprintsandpermissionsAboutthisarticleCitethisarticleAlsaiari,S.K.,Eshaghi,B.,Du,B.
AdditionalinformationPublisher的注释SpringerNature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息权利和许可PringerNature或其许可方(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Saari,S.K.,Eshaghi,B.,Du,B。
etal.CRISPR–Cas9deliverystrategiesforthemodulationofimmuneandnon-immunecells..
CRISPR-Cas9传递策略用于调节免疫和非免疫细胞。。
ProvidedbytheSpringerNatureSharedItcontent-sharinginitiative