数据挖掘工程师需要的技能(17篇)

1.负责用户特征、车辆特征等挖掘,并能结合应用场景进行抽象建模;

2.负责用户意图、偏好及车辆等建模画像工作;

3.负责梳理各业务场景下用户生命轨迹,挖掘价值点,建立用户行为预测模型;

4.负责挖掘用户、车源的关联关系,实体对象相似性计算,构建供需匹配推荐模型

任职资格:

2.掌握常用的机器学习算法,如关联规则、分类算法、聚类算法;

3.掌握至少一门编程语言,如python、c、c++、java等;

4.理解数据库原理,掌握sql,熟练使用hadoop系列工具;

5.有较强的结构化思维、逻辑思维、数据思维,具备独立思考问题解决问题的能力;

6.有用户画像建模及推荐系统工作经验者优先。

职责:

1、参与k12教育行业大数据分析、大数据处理、数据挖掘等系统的设计和开发;

2、根据业务需求,基于海量学生学习和行为数据(如错题等)进行数学建模,设计并开发高效算法,并对模型及算法进行验证和实现,通过产品和技术提升教学和服务的效率和质量;

3、应用各种机器学习、数据挖掘技术进行数据分析与用户画像;

4、设计和构建基于用户行为特征的平台化画像服务能力,并建立用户画像产品的评估机制和监控体系;

3、具备深厚的数据建模(机器学习、数据挖掘)工作经验;有大数据处理实际开发经验(hadoop、spark,、flink、elasticsearch、hive、hbase);

4、熟悉各种特征提取、数据降维等数据处理技术;从事过用户画像等方面工作;

6、具备较强的沟通能力和优秀的逻辑思维能力,擅长从海量数据中发现有价值的规律;

7、自我驱动能力强,踏实勤勉,对有挑战的问题充满激情;愿意在创业氛围中工作;

8、能够阅读英文技术文档及论文,具有良好的自学能力,可以快速学习和掌握新的方法和技术;

职责:

1、进行住宅数据抽取、数据清洗、数据探索、数据建模分析等工作;

3、负责房地产估值数据系统的开发;

5、参与系统文档的撰写、维护。

岗位要求:

1、数学、统计学、计算机等专业硕士毕业,具有数据挖掘领域1年以上开发经验;

2、至少掌握python、scala、r等语言其中一种,python优先;

3、掌握关系型数据库oracle、mysql、postgresql的使用;

4、熟悉常见的机器学习算法如knn、决策树、随机森林数、逻辑回归、svm等算法,熟悉常见深度学习算法cnn、lstm和神经网络;

1.参与海量数据挖掘平台设计与开发;

2.负责底层测试数据的解析开发;

3.负责数据挖掘需求模型设计与开发;

4.负责海量数据挖掘的分布式部署及其调优工作。

任职资格:

3.对mysql及任意一个nosql有深入的了解;

4.做事具有条理性,具有良好的自学能力、分析问题以及解决问题的能力;

1、负责caic各类数据平台的搭建及系统开发实现;

2、负责系统技术运维及各类技术问题处理;

3、负责系统间接口数据标准规范制定;

2、实际项目开发经验;

3、framework、c#语言,熟练使用visual开发工具;

4、熟练使用office软件,数据库产品,精通sqlserver等大型数据库系统开发,熟练使用js框架,如jquery/yui等,并解读过源码,熟练多框架加分,精通ajax技术;

5、有良好的沟通能力、处理解决问题的能力、强烈的责任感和敬业精神;

6、工作认真负责,且主动性强,抗压能力强,能快速融入团队,有较强分析、沟通和协调能力。

2、负责大数据可视化研究及平台构建及优化工作;

3、负责数据挖掘分析体系的建设,并建立和规范数据挖掘模型标准;

4、协助项目团队做好数据和应用的对接,完成项目的执行及交付;

5、配合架构师进行技术攻关和核心挖掘算法改善。

3、精通r、matlab、python等至少一门数据分析语言和oracle、sqlserver、mysql、hbase等至少一门主流数据库;

4、至少熟悉一种大数据可视化平台echart,tableau等;

5、熟悉hadoop、hive、spark等大数据处理平台优先;熟悉java/web开发及面向对象的编程方式者优先;

6、良好的逻辑思维能力,对数据敏感,能够发现关键数据、抓住核心问题;

7、具备团队合作意识和创新意识,具有较强的学习能力和解决问题的能力,热爱研究算法和新技术者优先。

1、负责产品数据库研发,参与系统整体架构设计;

3、负责产品模块的数据层分析、设计、编码、测试;

4、能够独立完成产品数据层开发任务,负责各类数据接口开发;

5、负责各类型数据操作处理和兼容问题;数据库复杂sql开发和调优。

任职要求:

2、5年以上java开发经验,有springboot框架开发经验,计算机硕士以上学历可酌情考虑;

3、系统掌握数据库原理和知识,精通sql语法规则和特点,有3年以上sql编写经验。熟悉主流数据库技术,良好的数据库基础知识,具备良好的sql编写与优化能力,熟练掌握oracle、sqlserver、mysql、postgresql等数据库语言,能熟练应用分析函数、存储过程;

4、熟练掌握数据库脚本的性能调优方法,有大量数据处理或开发经验者优先;

5、熟悉数据库建模,熟练运用建模工具进行产品的分析和设计;

6、有较强的交流能力,能很好的理解项目需求;

7、具备良好的自学能力和独立解决问题的能力;

8、沟通能力良好,具备团队合作精神,能适应一定压力开展工作。

1.参与打造数据中心内容的规划、设计、开发和优化工作,实现高质量数据的互通与共享;

2.参与数据模型体系构建及数据主题设计和开发,搭建离线、实时数据仓库;

3.参与数据产品与应用的数据研发;

4.负责日常应用系统监控,发现异常问题及时分发,并跟进后续处理;

5.编写python程序,或etl技术完成日常数据抽取和整理任务,可独立进行数据分析;

1.熟悉etl开发、数据仓库设计流程,熟悉oracle,mssqlserver等主流数据库,表结构设计,存储过程编写;

2.熟练掌握常用linux命令,具备shell编程能力,熟练掌握python编程语言

3.具有较强的语言表达和沟通能力,良好的团队合作精神

4.逻辑思维能力强,对数据敏感,有较强学习能力和创新思维;

5.具有高度的责任感和敬业精神,能够承受较大的工作压力

(2)按要求完成数据分析报告、建模报告、数据报表等;

(3)对数据进行深度挖掘和建模,做运营和用户等各方面分析,深度挖掘运营优化和用户行为特征等,推动分析问题的解决,为业务决策提供日常支持;

(1)大专以上学历,统计、数学、计算机、软件专业优先;

(2)熟练使用python,mysql语言,具有一定的工程能力,完善的文档和注释习惯。熟悉jupyterlab远程代码编写环境,linux常用命令。会使用r,java,scala等语言更佳。

(3)熟悉数据分析过程,能够完成数据抽取、数据处理、数据建模、数据分析报告等任务;

(4)一定的数据挖掘/机器学习理论和技术基础,了解常用的数据挖掘算法如:聚类模型、线性回归、逻辑回归、分类模型、决策树模型等。

1、对现有大量数据源进行深度挖掘、解析、特征分析,利用数据建立建模;

2、核心指标的监控和跟踪分析,并对异常波动情况进行分析和问题定位;

3、负责监控数据的可视化和自动化;

职位要求:

2、了解lr、gbdt、xgboost、dnn和nlp等常用模型的开源工具,了解开源可视化工具;

5、做事细心,具有很强的责任心,独立解决问题的能力;

1、负责客户业务数据分析工作、挖掘数据分析需求

2、负责制定和实施数据分析方案

3、负责数据挖掘类项目的建模

4、负责根据数据分析和业务挖掘结果对客户业务提出优化建议或决策支持

5、负责通过数据持续优化业务流程

6、其他工作

2、熟练使用spss、sas或其他统计分析工具辅助工作

3、至少掌握一门数据分析语言,如r/python

4、对数据高度敏感,能够通过数据分析问题、解决问题;

5、有数据分析和挖掘项目优先经验者

1、对海量业务数据进行分析,并利用算法挖掘用户行为特征,发现潜在规律,建立机器学习算法并优化;

2、利用数据挖掘技术分析、预测用户的消费行为;

3、建立各种业务逻辑模型和数学模型,帮助公司改善运营管理,节省成本。

1、大学本科及以上学历;

3、本科5年以上同岗位工作经验,研究生3年以上同岗位工作经验;

4、对统计学和数据挖掘算法原理有较为深刻的理解,了解数据仓库思想,熟悉spss、sas、r、mahout等数据挖掘软件之一;

5、熟悉决策树、聚类、逻辑回归,关联分析、svm,贝叶斯等数据挖掘算法,有海量数据挖掘的项目经验;

6、有用户行为分析、用户建模、业务建模、数学建模经验优先;

7、良好的逻辑分析能力、分析问题和解决问题的能力,对数据敏感,良好的沟通能力。

1.负责mpp数据库日常维护,业务数据收集整理,对多种数据源的进行集成;

2.负责bi平台搭建和日常维护、需求调研、模型设计工作;

3.涉及部分etl设计、模型设计、开发工作;

4.协助解决bi平台运行日常问题;

5.本职位上班地点:佛山顺德区。

2.熟悉oracle、db2等主流数据库,并对分布式数据库有了解,如果熟悉mpp数据库优先考虑;

4.接触并使用过前端报表开发工作;

5.良好的沟通能力和独立工作能力,良好的团队合作意识与责任心,良好的文档编写能力。

1.负责软件测试、搭建测试环境,按照测试流程、计划以及对产品特性的把握,编写测试案例,确保测试目的的达成;

2.根据测试计划及测试案例,执行测试,在软件生命周期的各个阶段执行相应的测试;

3.根据测试结果,与开发部门等反复沟通测试情况,修正测试中发现的缺陷,完善软件性能;

4.整理测试文档,编写测试总结;

5.设计与编写自动化测试用例、测试工具。

2.有文件系统测试经验者、手机客户端、性能测试、开发及分析经验者优先;

3.熟悉测试理论与方法,熟悉软件测试过程,能够独立完成测试计划及方案设计等工作,有丰富的软件测试技术及文档编写经验;

4.熟悉linux基本操作以及linux环境搭建;

5.具有很好的沟通和协调、表达能力;

6.有较强的学习能力和主动性,责任心强,有良好的团队合作精神和严谨的工作态度,具有独立分析能力和独立解决问题的能力。

1.熟悉vmware虚拟化规划、部署、支持、维护和p2v迁移

2.规划、实施服务器项目、公有云、混合云项目

3.熟悉各类微软产品,尤其是ad及exchange,基础服务器的结构并能提出改善解决方案

4.服务器发生系统故障时的分析与解决

5.微软体系架构的设计

1.具有vcp或微软方面的认证证书

2.精通虚拟化及windows各类应用

3.大专以上学历,计算机专业,英语精通

4.有三年以上从事服务器工程师经验,性格稳重

5.从事过公有云或大型混合云工作者优先

6.有系统集成工作经验者优先

1、负责数据库环境建设、维护、安全管理;

2、负责数据库环境变更、故障异常分析处理;

3、负责数据库日常运行状况监控、容量规划、架构设计等;

4、对运行的数据库进行性能分析和优化,并推进优化工作的有效实施;

5、支持技术咨询,部分售前交流和文档编写;

1、熟悉oracle、sqlserver等主流数据库,具有2年以上数据库管理及数据集成项目经验;

2、精通数据库的安装配置,故障处理,备份恢复操作,能够独立完成数据库日常管理和运维工作;

4、能够熟练运用rac/dataguard/goldengate/streams等高可用技术;

5、有良好的实施方案撰写能力和丰富的实施经验;

6、具有良好的逻辑分析能力、沟通能力和协调能力;

1、负责软件需求的需求分析及需求排期,编写需求分析说明书;

2、负责软件详细设计、系统整合,维护和改进现有系统;

3、熟悉axure、mockplus、visio等软件

4、熟悉主流关系型数据库至少一种(oracle,sqlserver,db2,mysql);

2、具备较强的逻辑思维能力,学习能力和良好的系统思考能力;

3、沟通能力好,工作态度积极阳光,文字功底良好,理解能力强;

4、勤奋好学、积极主动、勇于承担责任迎接挑战,并具良好的团队合作精神;

THE END
1.值得收藏机器学习实战项目汇总(初级中级高级3. Uber数据分析项目 项目构想:该项目可用于对超级数据执行数据可视化。该数据集包含纽约市中的450万个超级拾取器。为了分析行程,需要精美地表示很多数据,以便可以进一步改善业务。 4.人格预测项目 项目构想:Myers Briggs类型指示器是一种个性类型系统,根据内向,直觉,思维和感知能力将一个人分为16个不同的个性。我们https://www.bilibili.com/read/cv34715964
2.数据挖掘项目Coursera数据挖掘项目 免费注册 于Dec 12 开始 关于 结果 单元 推荐 评价https://www.coursera.org/learn/data-mining-theory-practice-project
3.数据挖掘项目MicrosoftLearn数据挖掘在 SQL Server 2017 Analysis Services 中已弃用,现在在 SQL Server 2022 Analysis Services 中已停止使用。 对于已弃用和停止使用的功能,文档不会更新。 若要了解详细信息,请参阅Analysis Services 后向兼容性。 数据挖掘项目是SQL Server Analysis Services解决方案的一部分。 在设计过程中,在此项目中创建的https://docs.microsoft.com/zh-cn/analysis-services/data-mining/data-mining-projects
4.如何去实践一个完整的数据挖掘项目?数据挖掘项目实战本文介绍了实践数据挖掘项目的完整流程,从抽象问题、获取数据、预处理、特征工程、模型训练、评估到模型上线应用。重点强调了业务理解的重要性,以及在特征预处理中的语料获取与预处理,特征向量表示如词袋模型和词向量,以及模型训练与评估指标。此外,还提及了KNN算法的优缺点和适用场景。 https://blog.csdn.net/Datawhale/article/details/87218545
5.什么是数据挖掘?如何进行数据挖掘数据挖掘(DataMining)是从大量数据中通过数理统计算法搜索隐藏于其中的信息的过程。它通常被视为数据库知识发现中的一个步骤。数据挖掘技术可以自动或半自动地从大量不完全的、有噪声的、模糊的和随机的数据中,提取出隐含在其中的、事先未知的、但又有潜在有用信息和知识的过程。数据挖掘涉及多个学科,包括统计学、https://baijiahao.baidu.com/s?id=1779508221728752274&wfr=spider&for=pc
6.数据挖掘与项目实践本文根据Keith B. Hermiz的《Critical Success Factors for Data Mining Projects》翻译整理而来,原文出自DM Review Magazine杂志。作者总结了数据挖掘项目中非常值得注意的几个重要实践经验(黄金准则),无论是企业决策者还是具体的挖掘项目参与者,相信都可以从中受到启发和借鉴。 http://www.linkshop.com/web/Article_News.aspx?ArticleId=241916
7.数据挖掘开源项目你的智能信息挖掘助手在这个信息爆炸的时代数据挖掘开源项目 1.你的智能信息挖掘助手 在这个信息爆炸的时代,我们每天都在被海量的数据所淹没。但真正有价值的信息,往往隐藏在这些数据的海洋中。今天,让我们一起来探索一个能够帮助我们高效筛选和提炼信息的开源项目:Wiseflow 1 项目简介 Wiseflow 是一个敏捷的信息挖掘工具,它能够从网站、微信公众号、https://juejin.cn/post/7408163165416816655
8.数据挖掘开源项目立项skyme因为最近一直都在搞数据挖掘类的项目,且现在国内的大数据潮火热。在前几天与群里的几位兄弟聊天所以有了做一个开源项目的想法,以前也搞过一个开源的项目,当时只是想把权限集中化做一下,项目的名称和地址是: http://www.cnblogs.com/skyme/archive/2012/02/07/2341364.html https://www.cnblogs.com/skyme/p/4359167.html
9.数据挖掘竞赛2017数据挖掘竞赛项目实例赛题:零基础入门数据挖掘 - 二手车交易价格预测 1.1 学习目标 理解赛题数据和目标,清楚评分体系。 完成相应报名,下载数据和结果提交打卡(可提交示例结果),熟悉比赛流程 1.2 了解赛题 赛题概况 数据概况 预测指标 分析赛题 1.2.1 赛题概况 赛题以预测二手车的交易价格为任务,数据集报名后可见并可下载,该数据来自https://blog.51cto.com/u_16213709/11626718
10.有哪些数据挖掘的竞赛项目帆软数字化转型知识库数据挖掘的竞赛项目主要有Kaggle竞赛、KDD Cup、DrivenData竞赛、Data Science Bowl、Zillow Prize等。Kaggle竞赛是其中最为知名的,广受数据科学家和机器学习工程师的欢迎。Kaggle平台提供各种数据集和问题,参赛者需要通过构建和优化模型来解决这些问题。Kaggle竞赛的优势在于其社区活跃度高、资源丰富,参赛者不仅可以与全球https://www.fanruan.com/blog/article/564899/
11.数据挖掘不是挖土豆,而是让数据开口说话!数据挖掘的意义非常重大,它可以帮助我们从大量的数据中发现有价值的信息和知识,从而为决策提供支持。 而数据挖掘的应用,西红柿总结可以分为 3 步走: 获取数据:这是数据挖掘的第一步,需要从各种来源收集相关的数据。这些数据可以来自数据库、文件、网络等,并且需要进行清理和预处理,以确保数据的质量和可用性。 https://zhuanlan.zhihu.com/p/688860762
12.一个企业级数据挖掘实战项目客户细分模型(上)一个企业级数据挖掘实战项目|客户细分模型(上) 大家好,我是云朵君! 导读:今天给大家带来了一个Python业务分析实战项目——客户细分模型的应用案例上篇,本文阐述比较详细,包括代码演示、可视化图形展示、以及文字详细分析。分析较浅,希望能够给大家带来些许帮助,欢迎交流学习!文章较长,建议收藏~https://cloud.tencent.com/developer/article/1876018
13.新形势下临床研究的新机遇新挑战梅斯数据挖掘项目分不同级别。有深度合作的大级别项目相对较长,如医院战略合作,以数据平台的方式做数据挖掘。也有以单个项目为目标的短期项目,例如研究者发起的一些项目,由研究者提供脱敏后数据进行数据挖掘及分析。根据结构数据结构化以及数据量,周期短的话大概三个月左右可以完成数据挖掘。 https://www.medsci.cn/article/show_article.do?id=99c1e279075b
14.数据挖掘与分析报告范文7篇.docx数据挖掘的目的在于通过对数据中信息的处理,筛选关键数据,发现数据挖掘与分析报告范文第四篇项目数据分析报告是通过对项目数据全方位的科学分析来评估项目的可行*,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险。项目数据分析报告—项目市场化*作的科学依据:政策背景:随着我国经济体制变革的不断深入发展,*的https://www.renrendoc.com/paper/234470348.html
15.北京泰迪科技a、完成全真项目案例学习,相当于3年工作经验——课程包含公司积累的精选项目案例,一个项目案例平均工期为3~4个月,学会10个案例相当于拥有30~40个月的项目经验,约为3年工作经验! b、参与实际项目开发,全真项目案例学习结束后,学员将进入项目实战环节,参与实际项目的开发,所有项目均是从公司在建数据挖掘项目剥离出来http://www.tipdm.org.cn/display.asp?id=863
16.基于数据挖掘的统计过程控制项目研究基于数据挖掘的统计过程控制项目研究 谭震 开通知网号 【摘要】: 统计过程控制(Statistical Process Control)是一种借助数理统计方法的先进质量管理和控制技术,以过程的稳定性为主要目标,强调全过程的预防,能够有效地降低产品的不合格率,从而降低生产成本。 近年来SPC技术在国外的应用已经非常广泛,已经成为提高企业管理的https://cdmd.cnki.com.cn/Article/CDMD-10423-2009173035.htm
17.大数据工程师简历模板具体工作内容包括: 1. 研究和开发机器学习模型,包括数据预处理、模型选择和训练等。 2. 设计和优化数据挖掘流程,确保数据挖掘项目的高效和可靠性。 3. 参与项目的方案制定和评估,确保项目按时完成并达到预期效果。 4. 与客户和同事保持良好的合作关系,及时沟通并解决问题。 5. 参与公司的技术交流和技术改进,不断https://www.liepin.com/mould/dashujugongchengshi.shtml
18.Python实战你用Python做过什么有趣的数据挖掘/分析项目?话说大二下那年,怀着对ML和DM的神往开始学习机器学习和数据挖掘,我身为一个数学渣敏锐得觉察到吴恩达大牛的公开课对我是一个坑,还是个神坑, 转而投入《机器学习实战》这一类不太需要过硬数学基础的机器学习和数据挖掘书籍中,于是开始学习Python+Matplotlib+Numpy了。 https://www.jianshu.com/p/19a09fb3ce0c
19.PMP项目管理4种常见的数据挖掘方法,你知道多少呢?【PMP项目管理】4种常见的数据挖掘方法,你知道多少呢?时长:0:58网友14761022864963133 美女直播 更多 PC版| APP专区| APP隐私政策 Copyright ? 2024 Sohu Inc. 京ICP证 网络视听许可证1908336 节目制作经营许可证粤第735号 https://m.56.com/view/id-MTgwMzY1NjY2.html
20.HR大数据之数据清洗与数据挖掘——“人力资源大数据实践项目”第最后,曹老师进行了数据清洗、数据挖掘的示例教学。同学们对这一环节非常感兴趣,积极参与数据清洗与挖掘的练习。在进行模型选择和建模时,有部分同学出现了因素选择操作失误的问题,曹老师耐心地进行了答疑。课后同学们纷纷表示收获颇丰,对人力资源大数据这一项目的兴趣更加深厚。 https://www.mbachina.com/html/ustb/20220410/427744.html
21.基于数据挖掘管理科学面上项目分析凭抗棘婉段捏豆格当营诺躺约翻浴攀渠哇惫深苞基于数据挖掘管理科学面上项目分析 _ 文胜搬测探临戒辣寐曲剑召债支话咆阳脓匙罚慷契丝隧比哪报在忧绑听勒务问防出吨谦拢在庐瘪十歧主粪凭寂孝达品摄截柑庙恶闷雷种盂唬霉肚金撼际冤捕目抹摘函尉繁藻练聪乓文气姑附匿智奖曹表顺慰蔑副找桅记乓铆呜颜https://max.book118.com/html/2017/0612/114246701.shtm
22.数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xg项目链接以及码源见文末 1.1 数据介绍 赛题以预测用户贷款是否违约为任务,数据集报名后可见并可下载,该数据来自某信贷平台的贷款记录,总数据量超过 120w,包含 47 列变量信息,其中 15 列为匿名变量。为了保证比赛的公平性,将会从中抽取 80 万条作为训练集,20 万条作为测试集 A,20 万条作为测试集 B,同时会对https://xie.infoq.cn/article/4d588ac3a87184aaf67ae0a2a
23.SAS数据挖掘与分析项目实战尚涛编计算机手册专业科技正版图¥378.00 佳贝艾特晶萃悦白幼儿配方羊奶粉3段(12-36个月适用)800g*1罐 查看商品参数 图书 港台圖書 港台圖書 科技 中国铁道出版社 SAS数据挖掘与分析项目实战 尚涛 编 计算机手册专业科技 正版图书籍 中国铁道出版社有限公司 https://m.suning.com/itemcanshu/0071602506/12438825466.html
24.19套Python网络爬虫项目+数据挖掘+数据分析入门到精通19套Python网络爬虫项目+数据挖掘+数据分析入门到精通-基础+高级+实战+框架+整合+扩展+分布式爬虫,构建高效搜索引擎,商业案例实战,数据挖掘思维与实战,从语法到高级应用视频教程 19套网络爬虫技术包含:Python网络爬虫,数据挖掘,数据分析,分布式,爬虫项目实战,爬虫高阶,入门到精通-基础+高级+实战+框架+整合+扩展+分布式https://www.soft1188.com/dsj/6454.html