远见个人信息保护法将出台揭开数据算法的神秘“面纱”

如今,大数据算法已深入每个人的生活:无论是电商平台,还是新闻客户端和短视频平台,大数据都能根据每个人的特点实现“千人千面”推送;在一些金融平台,科技金融公司也会用安全系统对用户进行“数字画像”,以此确定放款额度和利息。

但有时,大数据也让人有“被监视”的感觉,手机放在身边,刚和朋友说几句话,APP就会推送相应的内容,让人不寒而栗。此外,“大数据杀熟”也一直是备受争议和诟病的问题。

几年来,从网络安全法到时下备受瞩目的个人信息保护法草案、数据安全法草案,关于信息安全的立法进程不断完善和推进,数据算法的合理使用会服务人、更懂人,但是滥用则会侵犯人和控制人。算法到底是什么?怎样平衡安全和服务的边界?个人信息保护法又将怎样保护公民?

主持人:王思远总台央广经济之声【远见】栏目制作人

对话嘉宾:余弦资深安全技术专家、白帽黑客、漫雾科技创始人

数据安全法,明确“数字主权”,刹住数据越权乱象

思远:关于大数据的话题屡见不鲜,但很多时候是偏负面的,比如打车、住酒店时的“大数据杀熟”;外卖小哥被“困在系统里”。这些让算法变得很神秘和冰冷,作为从业者,你怎么用最通俗的理解去解释算法

余弦:简单说,“算法”就是用很多机器、服务器去尽可能模拟人类的思维、行为。大家会把算法简单理解为“人工智能”,但跟人类的思维和行为比,还有非常大差距。在长远的未来看,算法会让我们有更精准的感知和更好的应用场景;但当下还是早期,有时算法会比较“粗暴”。

思远:算法有时会给人两个极端的感觉。一面像是AlphaGo,特定的领域和规则下,表现远远优于人类;另一面,它又缺少人类的温度和感情。

余弦:技术的应用一定要看场景,比如AlphaGo下棋非常厉害,但只局限于此,下棋只是非常小的场景。单一场景内,模型的搭建是很简单的,在特定领域有小维度边界时,算法还能做到速度、储存量、运算能力上超过人类,但真的能够像人类似的万事俱通,在不同的领域都有自己的一套智慧和解决问题的方式,算法还差得非常远。

思远:2020年10月21日开始,个人信息保护法草案正式进入审议——千呼万唤始出来,无论是行业还是用户,都很需要。从业者需要知道数据使用和隐私保护的边界,用户希望技术服务人而不是侵犯人。个人信息保护法,整体从哪些方面保护人的权利?

现在的大数据乱象是伴随新事物而诞生,法律不能盲目制定,有一个过程。2017年6月1日起,网络安全法实施,其对网络个人数据已经有了一些定义;像民法总则、民法典等,也有关于个人信息、数据安全的规定。从国家层面,立法过程中也参考了海外,包括像欧盟通用的数据保护条例。无论是已经颁布的,还是探讨中的草案,我们都该重视它。

作为服务者,也要弄清自己的责任,比如数据储存在服务器里,但如果因为服务器漏洞被入侵的“黑客”偷走了,怎么界定责任?互联网厂商承不承担责任?法律上关于这种界定会越来越多,当下不能说法律很完善,但至少有了这几部法律的帮助,是很好的促进。

“爬虫学得好,牢饭吃到饱”?——论技术的价值观

思远:如果说算法是底层的逻辑和系统,那么大数据就是养料和细胞。从PC时代,到移动时代,再到物联网时代,算法都离不开“爬虫技术”,简单说就是通过网络勾连,实现数据的收集、分析和再组合,实现特定的目的。但“爬虫”经常会爬到隐私,听说圈里有一句话叫“爬虫学得好,牢饭吃到饱”?

余弦:在安全行业,尤其是前两年做“爬虫”生意的一些企业,都因此而触碰了法律被制裁。“爬虫”技术本身没有好与坏的说法,就像菜刀可以做菜,也可以犯罪。

思远:技术是中立的,但取决于人的价值观。

余弦:“爬虫”分为两种场景。第一种是专门做“爬虫”,故意去爬服务器的敏感数据,就是主观作恶。另一种是不小心把数据拿了回来。比如把个人的社保医疗隐私不小心爬回来了,但看到这个信息还挺有价值的,可能会二次利用。同时,这些社保医疗机构网站有漏洞,有没有责任呢?这就像是主动入室盗窃和主人没锁好门导致误闯民宅。不同情况,有不同的认定和处理,这是法律需要界定的。

场景1:金融风控,哪些“大数据画像”侵犯隐私?

思远:我们来聊聊算法的应用场景。生活中最常见的是金融风控——金融数据中的算法是怎样的逻辑?

余弦:核心是通过各类用户数据采集,进行用户画像。让业务决策者更好地理解目标群体,数据越准确、丰满,就越有利于特定的场景去做针对性的事情。

思远:比如给金融借贷,根据征信和消费行为等数据,判断优质客户,给出更好的还款周期和价格,用更低的价格、更高的额度做长线生意;对风险大的客户,拒绝放款。

余弦:这个现象确实非常普遍。很多时候,普通人高估了算法,在我们看来,很多技术真的非常粗暴,就如用户借贷的钱还不上,暴力催收公司通过非法采集用户数据,用灰色方式催债。

思远:很多信息的获取就是一瞬间,交易速度非常快,这对发现违法行为、固定证据会有很大麻烦。真正执法,要靠企业自律或相互监督、举报等,还是什么?

余弦:从操作角度来讲,这些法律是绝对可行的。这里面可能会涉及到具体敏感的话题,这里暂时不展开谈。但首先我们都得有法,才能去操作。未来的执法过程,一方面,数据的滥用,行业内确实有不少的外露特征,明面上能看到;执法肯定由公安进行——比如网安、网络警察。

场景2:大数据营销愈发精准,我们是否被“监视偷听”?

余弦:如果单方面来看,感觉会很惊悚,当然,实际上这是“幸存者偏差”,并不是非常普遍的事件,跟算法也没什么特别的关系——它可能是一种概率,碰巧遇到了,会放大这个事情。营销数据专门有做营销产业链的,通过各方面去采集数据,包括可能有非法的一些交易,能够尽量做到精准推广。

无论是个人信息保护法草案,还是数据安全法、网络安全法、民法典等,多少都有围绕隐私的关于数据的定义或说法。数据活动指的是,数据在收集、存储、加工、使用、提供、交易、公开等行为;数据安全是指通过采取必要的措施,保障数据得到有效保护和合法利用,并持续处于安全状态的能力。

思远:你说了两点。第一,有时大家过于敏感,陷入了“幸存者偏差”;第二,算法、大数据的合法性,包括大数据应该去脱敏的信息点,需要法律规范。回到算法本身,有句话说,“未来世界,只有两种人,一种是控制和决定算法的人,一种是被算法控制的人”。好像很有道理,以往人会自己去探索信息,有更多发展的可能性;现在算法会困住人,越来越懂你的同时,推荐的信息就越来越局限,会围绕着现有的水平、认知和圈层。你怎么看这个问题?

余弦:我赞同行业内这个说法。算法是机器输出来的,通过人类反应的信息,按照概率计算,反向给出推荐信息和服务,又让人形成新的依赖感,手机成了人的器官,人掉入了数据的舒适区,沉浸在这种数字体验中。我也会这样。

但另一方面,我懂技术,某些层面上我也控制算法,尽量让算法能为周边的人提供价值。所以我们才会讨论关于算法的法律红线,否则算法肯定会失控,要更规范,肯定要有法可依。某种程度上,算法和人是相互依存的关系,没有人的行为就没有数据,没有数据就没有了算法。

但同时我们也看到说,算法本身以技术的形式去存在,技术上,其实张一鸣曾在几年前抛出一个言论,大家也讨论得非常热烈,就是说,技术其实本来是工具,工具只分好用和不好用之分,技术高和技术低,我觉得这句话本身没有错。

因此,综合到算法上来说,无论是这个产业环境还是我们的生活,算法上有没有价值观,其实先放在一边,但是研究算法的人、使用算法的人必须有价值观,必须有法可依,算法才能更加值得人去信赖。

THE END
1.大数据机器学习算法概论腾讯云开发者社区大数据 机器学习 算法概论 ?算法概述? 算法是计算机科学领域最重要的基石之一,计算机语言和开发平台日新月异,但万变不离其宗的是那些算法和理论,数据结构和算法是软件开发必备的核心基础,是内功心法。下面举例拿推荐算法和分类算法的实际场景做下举例:https://cloud.tencent.com/developer/article/2479107
2.人工智能与大数据的深度融合带来的创新应用3. 大数据与人工智能紧密结合——新兴科技革命 3.1 数据驱动的人类活动模式转变 随着大规模集成式采集工具和云计算服务变得普遍可用,大量关于用户行为、环境监测以及经济活动等方面的大型数据源开始出现。大部分组织现在都意识到了这份宝贵资源,并努力将其转换为有用的知识,这正是利用大规模计算平台加上先进算法实现的人https://www.ykngnhhi.cn/shou-ji/544151.html
3.当今的大模型,普遍患有“数据饥渴症”澎湃号·湃客澎湃新闻澳鹏数据专注于AI数据服务,提供高精度数据标注平台和大模型智能开发平台,其自主研发的预标注通用模型和交互式算法在数据标注任务中能产生显著效率提升; 星尘数据提供AI数据标注和数据管理服务,平台可以处理100多种主流采集和标注场景。 数据挖掘的新方向:多模态与非传统数据源 https://www.thepaper.cn/newsDetail_forward_29673947
4.有人反复评论机票太贵让价格骤减3000元,年轻人开始算法驯化大数据大数据杀熟是平台无良,但卸载APP治标不治本。得让监管出手,把算法透明化、公平化,让老客户也享受到实惠才行啊! 12-14 13:47 山西 回复 64 心瀚小1C 抱歉打扰了我是个老兵,娃娃现正在被病痛缠身实在是没有任何办法了,现在我和孩子母亲每天在走廊盖着一个破毯子,一切只为了娃,可是现在真的无能为力了,恳求https://quanmin.baidu.com/sv?source=share-h5&pd=qm_share_search&vid=6285840807725490875
5.大数据:分类算法深度解析大数据分类算法深度解析 在大数据时代,处理海量数据并从中提取有用信息变得至关重要。分类算法是机器学习领域的核心,它们在大数据分析、模式识别和决策支持等方面发挥着关键作用。本文将深度解析大数据分类算法,包括其基本原理、常见算法、应用场景以及未来发展方向。 http://www.360doc.com/content/24/0112/20/78411425_1110858832.shtml
6.专业定制师or大数据推荐,你愿意把你的黄金假期交给谁?这家总员工数将近150人却有110多位技术人员的公司将重心放在了通过算法排列组合出最佳行程这件事上。 比如你想去欧洲玩10天,先输入你要去的城市、时间、人数、预定房间数、出发和返回城市;然后设置旅行偏好,比如飞机还是火车、是否接受廉价航空;大致行程出炉后,再做城市内规划,选择想去的景点、喜欢的酒店或餐厅风格https://www.tmtpost.com/1706368.html
7.美柚:最懂女性App背后的混合云架构与大数据服务这张图展示了美柚利用大数据进行反垃圾算法的整体框架,主要包含两部分。虚线上方是反垃圾算法的训练流程,最开始是基于NLP自然语言处理进行,首先对文本数据(垃圾贴和正常贴)进行分词,这些分词需要定期更新,然后再对帖子进行特征处理和选取,将提取之后的特征送入分类器模型训练,其中分类器包括贝叶斯分类、逻辑回归分类等,通https://developer.aliyun.com/article/11259
8.大数据“杀熟”套路太深!多位法学专家建言破解之道南方plus中国社科院大学副教授韩伟认为,消费者面临供应商通过算法实施的各类策略行为,可以考虑通过算法来武装自己。理论上来看,数字经济时代独立化的算法助理发展,一定程度上有助于对抗基于算法的大数据杀熟这类问题。 韩伟表示,算法助理大体有五大作用:提升买方力量、强化卖方约束、节约交易成本、抑制算法合谋、缓解算法歧视。比如,https://static.nfapp.southcn.com/content/202110/27/c5875937.html
9.大数据的诅咒:算法霸权与数学杀伤性武器看来,大数据有时候并不准。把大数据挂在嘴边的人,也通常不大靠谱。 之前写了一篇关于大数据的文章——《大数据推荐机制错在哪里?》,至今并没有看到这些使用大数据算法的互联网企业有什么进步,无非是多了一些数据,优化了推荐内容,更加相信大数据和算法的力量。 https://www.jianshu.com/p/b2840e78be21
10.java大数据算法java大数据是什么意思jacksky的技术博客java 大数据 算法 java大数据是什么意思 一、 大数据 背景:随着科技的发展,智能手机、智能穿戴设备越来越普及,数据量越来越庞大,大数据应运而生。 1M=1024KB 1G=1024M 1T=1024G 1P=1024TB… 大数据:大(海量)+数据(论文、视频、游戏战绩、购买记录等等)https://blog.51cto.com/u_14125/6788081
11.TCCT通讯Newsletter2016No.05资产组合优化的多分形模型及实证分析 系统科学与数学, 2016 Vol. 36 (2): 198- Abstract | PDF 刘爽,吕永波,张仲义 网络学术期刊核心竞争力评价研究 系统科学与数学, 2016 Vol. 36 (2): 210- Abstract | PDF 贾效伟,李梦,贾忠伟 从健康系统工程谈口腔影像学大数据研究伦理 系统科学与数学, 2016 Vol. https://tcct.amss.ac.cn/newsletter/2016/201605/journal.html
12.多拉快跑更安全?看G7智能挂的神级操作1、大数据算法,智能配货 拉货永远遵循一个原则,那就是多拉快跑,这句话用在快递快运领域尤其适合。 大家都知道,在快递快运领域多用的是厢式车。那么,如何在国家法律法规的允许下获得更大容积的厢式车,在同样容积的箱体里摆放更多的货物则成为现代运输人亟待解决的问题。 http://www.360che.com/news/190228/106757.html
13.滴滴出行定制公交上线济南基于数据算法选择线路利用滴滴出行以及合作公交公司大数据,滴滴公交可以串起城市中的居住区域与工作区域,选定最佳路线覆盖到最多人群。 这些公交线路基于城市现状公交站点及线网分布,根据滴滴平台大数据挖掘出的用户地理标签,先利用聚类算法找出城市中的热点通勤区域及通道,再利用路径规划算法在热点通勤通道中选出具体经行站点及路径,以最大化满http://3g.sdchina.com/show/4336361.html