数据挖掘原理与算法课程学习(1)Junn9527

比较有代表性的分类知识挖掘技术有:

a、决策树:通过一系列规则对数据进行分类;

b、贝叶斯分类(BayesianClassification):

c、神经网络:

d、遗传算法与进化理论:

e、类比学习(AnalogyLearning):

f、其他:非线性回归方法;粗糙集方法;模糊集方法;

(2)聚类

聚类是把一组个体按照相似性归成若干类别,他的目的是使得属于同一类别的个体之间的差别尽可能的小,而不同类别上的个体间的差别尽可能的大。

代表性方法:

a、基于划分的聚类方法:

b、基于层次的聚类方法:凝聚(Agglomeration);分裂(Division);

c、基于密度的聚类方法:

d、基于网络的聚类方法:

e、基于模型的聚类方法:

4、预测型知识挖掘

预测型知识(Prediction)是指由历史的和当前的数据产生的能够推测未来数据趋势的知识;

a、趋势预测模式;

b、周期分析模式;

c、序列模式;

d、神经网络;

5、特异型知识挖掘

特异型知识(Exception)是源数据中所蕴含的极端特例或明显区别于其他数据的知识描述,它揭示了事物偏离常规的异常规律;

a、孤立点分析:

b、序列异常分析:

c、特异规则发现:

1.6、不同数据存储形式下的数据挖掘问题

1、事物数据库中的数据挖掘:

2、关系型数据库中的数据挖掘:

3、数据仓库中的数据挖掘:

4、在关系模型基础上发展的新型数据库中的数据挖掘:面向对象数据库;对象-关系数据库;

5、面向应用的新型数据源中的数据挖掘:空间数据库;事态数据库;工程数据库;多媒体数据库;

6、Web数据源中的数据挖掘:

关键问题:异构数据源环境;半结构化的数据结构;动态变化的应用环境;

3个主要研究流派:

Web结构挖掘(WebStructureMining):挖掘Web上的链接结构;

Web使用挖掘(WebUsageMining):对Web上的Log日志记录的挖掘;

Web内容挖掘(WebContentMining):基于关键词的Web内容挖掘等等;

1.7、粗糙集方法及其在数据挖掘中的应用

粗糙集理论是一种研究不精确、不确定性知识的数学工具;

1、粗糙集中的一些重要概念:

1.8、数据挖掘的应用分析

1、数据挖掘与CRM(客户关系管理)

2、数据挖掘应用的成功案例分析

a、数据挖掘在体育竞技中的应用:

b、数据挖掘在商业银行中的应用:CRM;金融投资;欺诈甄别;

c、电信行业:

d、科学探索:

e、信息安全:

第二章:知识发现过程与应用结构

2.1、知识发现的基本过程:

(1)问题定义阶段:要发现何种知识;

(2)数据抽取阶段:

(3)数据预处理阶段:当数据挖掘的对象是数据仓库时,数据预处理一般在数据仓库生成时已经完成了,但当源数据来自多数据源时,数据预处理就是一个重要的步骤了;

(4)数据挖掘阶段:选定合适的挖掘算法;

(5)知识评估阶段:对发现出来的模式进行评估,剔除无关模式;若模式不满足要求,可能要回退到前续阶段,重新执行;

2.2、数据库中的知识发现处理过程模型

几个比较有代表性的KDD模型架构:

1、阶梯处理过程模型:

源数据—(数据选择)—>目标数据—(数据预处理)—>预处理后的数据—(数据缩减)—>缩减后的数据—(数据挖掘)—>模式—(模式解释与评估)—>知识;

每个处理阶段都可以借助相应的处理工具来完成工作;

2、螺旋处理过程模型

——>定义问题——>抽取数据——>清洗数据——>数据工程——>算法工程——>运行挖掘算法——>分析结果——>(循环);

3、以用户为中心的处理模型

该模型特别注重对用户和数据库交互的支持。

4、联机KDD模型

OLAM(OnLineAnalyticalMining,联机分析挖掘)是对OLAP的发展;需要可视化技术的支撑;

把OLAM划分成若干抽象层次,每个抽象层次都有明确的任务;

5、支持多数据源多知识模式的KDD处理模型

2.3、知识发现软件或工具的发展

1、通用型数据挖掘工具

2、面向特定领域的数据挖掘工具

2.5、数据挖掘语言介绍

1、数据挖掘查询语言

DBMiner中的DMQL(DataMiningQueryLanguage);

MSQL:一种类似SQL的语言;

2、数据挖掘建模语言

PMML(PredictiveModelMarkupLanguage,预言模型标记语言):一种基于XML的语言;

3、通用数据挖掘语言

结合上述两种语言的特点;

微软提出的OLEDBforDataMining(DM),扩充了SQL语言语法,调用API实现数据挖掘功能,与关系型数据库自然的集成;

THE END
1.目前算法都有哪些研究方向算法研究目前算法的研究方向相当广泛,涵盖了多个领域和细分方向。 搜索算法:研究高效搜索和查询的方法,如深度优先搜索、广度优先搜索、A*搜索等。 合成数据:关注生成具有特定属性和结构的合成数据,用于训练和评估AI模型。 去二次方大模型(Subquadratic LLMs):研究降低大语言模型计算复杂度的方法,使得模型的计算需求随输入规模增https://blog.csdn.net/ly_7956/article/details/139209690
2.算法设计与分析一介绍:现代科学与技术的基石在当今数字时代,算法设计与分析已成为计算机科学中的核心领域之一。从搜索引擎的排序算法到人工智能的深度学习模型,算法的应用无处不在,影响着我们日常生活和工作的方方面面。本文将深入探讨学习算法的重要性、算法设计与分析的历史发展、实际应用、理论基础https://mp.weixin.qq.com/s?__biz=MzU1NjEwMTY0Mw==&mid=2247592872&idx=1&sn=870aec7f1825ed8c953b7a7aba9c89d8&chksm=fa4d4b0f52979850b80898eb8229434dba7a2dacd52076cb0c166fa3fc227b80775c6b251c58&scene=27
3.算法伦理探析原标题:算法伦理探析 算法伦理的核心原则是算法人文主义 陈昌凤、吕宇翔在2022年第3期《内蒙古社会科学》《算法伦理研究:视角、框架和原则》一文中认为,算法伦理的核心原则是算法人文主义,即坚持人文主义的传统三个要素。一是智能算法时代,仍然要坚持人的主导价值,重视人的独特性即人的尊严;二是在将算法广泛应用https://baijiahao.baidu.com/s?id=1777430967379646700&wfr=spider&for=pc
4.基于优化理论的支持向量机学习算法研究2.对光滑支持向量机进行研究.无约束支持向量机模型是非光滑不可微的,许多优化算法无法直接用来求解该模型.采用CHKS函数作为光滑函数,提出了光滑的CHKS支持向量机模型,并用Newton-Armijo算法来训练该模型.该算法通过批处理训练来提高训练速度,节省存储空间,可以有效求解高维、大规模的分类问题. 3.基于优化理论中的KKThttps://cdmd.cnki.com.cn/Article/CDMD-10701-2009195330.htm
5.图像增强算法机器学习图像增强算法研究jiecho的技术博客图像增强算法 机器学习 图像增强算法研究 文章目录 系列文章目录 前言 一、Retinex理论 二、算法目的: 三、Retinex基础算法 四、算法介绍及流程 4.1 SSR算法介绍 4.2 SSR操作流程 4.3 MSR算法介绍 4.4 MSR操作流程 4.5 MSRCR算法介绍 4.6 MSRCR操作流程 4.7 MSRCP算法介绍https://blog.51cto.com/u_12902/8023281
6.算法社会研究的经典之作:简议《算法社会:技术权力和知识本书是国内市场上为数不多在理论和实践两方面均有所长的著作,加上运用哲学、政治学、法学、管理学、心理学和生物学等多学科知识,可谓内容精深、方法独到。作者在书中独创了一些独特的概念如算法治理术、算法的技术篡夺、负责任和可问责的算法运行等,这些概念提供了算法理论研究的有益切入点。http://e.mzyfz.com/paper/2135/paper_57230_11786.html
7.JeffDean撰文:谷歌AI2018研究成果汇总今年,我们在计算摄影研究方面的主要工作之一是创造一种称为“夜视”(Night Sight)的新能力,它使 Pixel 手机相机能够“在黑暗中观看”。 左:iPhone XS(全分辨率)。右: Pixel 3 的夜视能力(全分辨率) 算法和理论 算法是谷歌系统的支柱,触及我们所有的产品,从Google trips背后的routing算法到Google cloud的consistenthttps://36kr.com/p/1723150434305
8.理论网本文使用组织网络相关理论研究组织,受以汤普森(Thompson)为代表的开放系统组织研究思路启发[3],把组织作为一个动态、开放的组织过程进行结构和机制分析,而非静态实体来研究。本文所讨论的组织网络是在数智化背景下开放的、动态的复杂巨系统。 在数字化转型情境下,数据资源化与数字技术的运用改变了组织赖以保持竞争力https://www.cntheory.com/zydxgjxzxybk/zgzydxgjxzxyxb/zdwztj/202311/t20231108_62085.html
9.科研动态我院几何计算团队在结构化网格理论与算法研究方面近日,我院几何计算团队在结构化网格理论与算法研究方面再次取得突破,分别在计算力学领域顶级期刊《Computer Methods in Applied Mechanics and Engineering》(CMAME)和计算机辅助设计领域顶级期刊《COMPUTER-AIDED DESIGN》(CAD)发表重要论文。 CMAME期刊是计算力学领域的顶级期刊,致力于发表流体力学、材料力学、固体与结构力学http://drise.dlut.edu.cn/info/1181/11423.htm
10.科学网—工业领域占据统治地位80年之久的PID算法为何如此坚固从目前的工业应用场景来看,大多数还是第一种情况,这里我们就可以用理论研究方向进展不尽人意的原因来解释,进一步思考在于理论方向的研究者们有没有意识到这个问题?也就是这个算法必须具有一个突出的点,同时,各方面不能有硬伤,才能够让使用者纳入考虑范围。即使意识到这个问题,也是有门槛的,至少得有一个多元化团队。https://blog.sciencenet.cn/blog-3387802-1332750.html
11.中国工程物理研究院研究生院方向简介:主要研究内容是在有噪声的条件下实现高精度量子计算的方法及其应用,包括发展容错量子计算的理论和量子纠错理论,寻找低量子比特损耗的容错量子计算方案,优化量子模拟计算算法,探索量子计算在人工智能、量子化学、数学优化及凝聚态物理等领域的应用,基于量子错误缓解探索有噪声中等规模量子计算技术的实际应用。 https://gscaep.ac.cn/subPage/rencaizm.html?id=2160
12.AIDL专栏方以类聚,物以群分,吉凶生矣于剑:聚类理论与算法聚类算法的公理化研究是聚类分析理论发展过程中重要的研究方向之一。 文献上有三种研究聚类公理化的方法:聚类判据(目标函数)的公理化,聚类映射的公理化,聚类有效性函数的公理化。 1、 聚类判据的公理化 Karayiannis在1999年首先进行了聚类判据公理化的尝试。如下面的函数公式: https://cloud.tencent.com/developer/article/1626593
13.最优化理论与算法(第2版)/清华大学研究生公共课教材·数学系列简介最优化理论与算法(第2版)/清华大学研究生公共课教材·数学系列 暂无报价 1500+评论 99%好评 编辑推荐: 内容简介: 本书是陈宝林教授在多年实践基础上编著的。书中包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划KT条件、无约束优化方法、约束优化方法、整数规划和动态规划等内容https://www.jd.com/hhyx/87f65e3e5647c8f0.html
14.“新一代人工智能”研究的三大重点方向聚焦人工智能重大科学前沿问题, 以突破人工智能基础机理、模型和算法瓶颈为重点, 重点布局可能引发人工智能范式变革的新一代人工智能基础理论研究, 为人工智能持续发展与深度应用提供强大科学储备。 1.1 新一代神经网络模型 借鉴神经认知机理和机器学习数学方法等, 开展神经网络模型非线性映射、网络结构自动演化、神经元和https://blog.itpub.net/29829936/viewspace-2600424/
15.边伟哈工大数学系哈尔滨工业大学.doc国家自然科学基金-青年科学基金—约束非光滑非凸优化问题的算法理论研究与应用,-。哈尔滨工业大学青年拔尖人才计划—稀疏还原问题中的优化理论与算法研究,-。哈尔滨工业大学基础研究杰出人才培育计划III类—优化理论与算法、神经网络,-。哈尔滨工业大学理学创新研究发展培育计划—基于图像恢复问题的稀疏优化理论与算法研究,-https://www.taodocs.com/p-262211112.html
16.《最优化理论与算法(第2版)——清华大学研究生公共课教材·数学当当网图书频道在线销售正版《最优化理论与算法(第2版)——清华大学研究生公共课教材·数学系列》,作者:陈宝林 编著,出版社:清华大学出版社。最新《最优化理论与算法(第2版)——清华大学研究生公共课教材·数学系列》简介、书评、试读、价格、图片等相关信息,尽在http://product.dangdang.com/9059113.html
17.陈吉栋人工智能法的理论体系与核心议题可信对应的是人工智能的不确定或风险。现阶段,确保人工智能可信已经成为政策制定和学术研究的重点议题。技术上,稳定性、泛化能力(可解释性)、公平性、主体权利保护等,构成了可信人工智能的基础。现阶段法学界理论研究尚未足够重视可信作为原则的基础作用,主要聚焦算法可信治理和数据可信利用的研究。https://www.jfdaily.com/sgh/detail?id=940325