(1)体量大。不少的O2O电商企业每日所产生的用户数据已经达到TB级。在融入了社交网络和移动互联网的O2O电子商务中,O2O用户数据已不仅仅是用户交易数据,它拥有更加广泛的数据源,其数据规模会从TB级跃升到PB甚至是EB级。未来企业会将更多的TB级数据应用于商务智能和商务分析。
(3)速率快。O2O模式对用户数据实时处理有着极高的要求:用户数据伴随用户行为产生,这些数据往往是高速实时数据流,例如用户在线下商家的消费情况、用户的地理位置和移动方向等,而且O2O业务周期短,这需要实时的分析用户数据并根据分析结果对用户进行个性化服务,通过传统的数据库查询方式得到的“当前结果”很可能已经没有价值。
2大数据环境下O2O电商用户数据挖掘流程与方法2.1O2O电商用户数据挖掘框架由于O2O电商用户数据的4V大数据特征,电商企业并不能运用传统数据分析技术对其进行很好的利用。传统数据分析与大数据挖掘都是从数据中提取有用信息、发现知识,是对数据进行深入分析和增值开发利用的过程,但是它们之间有着本质区别,主要体现在:
1)两者分析的数据规模不同,传统数据分析处理的通常是存储在数据库或者文件中的数据,数据规模一般是GB级以下,而大数据挖掘中的数据规模一般是PB级甚至更大量级;
2)两者分析的数据类型不同,传统数据分析主要针对静态的、结构化的数据,而大数据挖掘的对象不仅仅是结构化数据,还包括半结构化、非结构化数据,很多时候是以实时数据为主;
针对O2O电商用户数据特点,数据挖掘为O2O电商提供更有用的知识,更精确的信息以及更及时的响应。基于此,我们提出了一种O2O电商用户数据挖掘框架,如图1所示。
图1.O2O电商用户数据挖掘框架
图2.O2O电商数据挖掘流程
(1)数据收集。
O2O用户数据源包括O2O平台的用户数据等。用户数据以“流”的形式创造,由于3个数据源之间有交互,且其数据内容往往交叉,所以按照交易、互动及观测数据进行分类,然后通过Needlebase等工具在用户消费的过程或其它行为中收集。
(2)数据预处理。
(3)数据挖掘及其应用。
在数据挖掘过程中,根据不同的应用需求选择不同的挖掘模型,对数据进行深度挖掘。其中主要模型有:关联规则分析、分类分析、聚类分析等,当前数据挖掘也存在一些用户模型,这些用户模型将人以性别、种族、年龄和兴趣等分类。得到数据挖掘结果后,对其进行解释应用,一般挖掘应用包括排名与个性化推荐、异常检测、Web挖掘与搜索、大数据的可视化计算与分析等。2.3O2O电商用户数据挖掘方法数据挖掘通过预测未来趋势及行为,做出前摄的、基于知识的决策。
利用数据挖掘进行数据分析常用的方法主要有分类、聚类、关联规则等,它们分别从不同的角度对数据进行挖掘。O2O电商用户数据挖掘的方法主要有关联规则分析、分类与聚类分析、社会网络分析、变化与偏差分析。
(1)关联规则分析。关联可分为简单关联、时序关联、因果关联。在O2O模式中,通过对用户数据进行挖掘,可以从大量的记录中发现其关联关系,找出影响用户行为的关键因素,为用户需求、用户细分、风险评估和诈骗预测等决策支持提供参考依据。
(2)分类与聚类分析。分类是找出数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据项映射到某个给定的类别。它可以应用到O2O用户的分类、用户属性和特征分析、用户满意度分析、用户购买趋势预测等。在O2O用户数据挖掘中,聚类分析是细分市场的有效工具,被用来发现不同的客户群,研究消费者行为,并且通过购买模式刻画不同的客户群体特征。它可以应用到O2O用户个体归类、用户背景与兴趣分析、用户购买趋势预测等。
3.1面向O2O平台的数据挖掘应用
3.1.1实施精准营销对
O2O平台来说,用户数据挖掘代表着更细化的市场、更精准的用户行为预测、更精确的用户需求。通过收集、加工和处理涉及用户消费行为的大量信息,确定特定用户群体或个体的兴趣、消费习惯、消费倾向和消费需求,进而推断出相应用户群体或个体下一步的消费行为,然后以此为基础,对所识别出来的用户群体进行特定内容的定向营销,这与传统的不区分用户对象特征的大规模营销手段相比,节省了营销成本,提高了营销效果,提升了平台的价值和锁住大量高粘度的消费者,进而能争取到更多的商家资源。此外借助数据挖掘,O2O平台还可以有效的、低成本的识别高价值用户,将这些用户与其它普通用户区分出来,针对他们的特点进行特别服务以获得更高的收益。
3.2面向O2O用户的数据挖掘应用---
图1.基于用户数据挖掘的个性化推荐
3.3面向O2O商家的数据挖掘应用
3.3.2产品与服务管理一方面用户数据挖掘为商家提供精准营销实施的最佳方案,及时响应客户需求,促使订单的生成;另一方面用户数据挖掘可以帮助商家优化决策流程,使商家库存和价格自动微调,以实时响应O2O平台上的销售情况,增加其产品或服务流转。商家洞察,就是由表及里、由浅入深,发现用户深层需求的过程。而掌握大数据、并拥有分析能力的商家将获取此种洞察能力,以发掘商业隐形知识和识别潜在商业机会,比如有关用户喜好和潜在需求方面的重要信息,从而为商家的产品或服务创新提供参考。